A perturbative extension to optimized coordinate vibrational self-consistent field (oc-VSCF) is proposed based on the quasi-degenerate perturbation theory (QDPT). A scheme to construct the degenerate space (P space) is developed, which incorporates degenerate configurations and alleviates the divergence of perturbative expansion due to localized coordinates in oc-VSCF (e.g., local O–H stretching modes of water). An efficient configuration selection scheme is also implemented, which screens out the Hamiltonian matrix element between the P space configuration (p) and the complementary Q space configuration (q) based on a difference in their quantum numbers (λpq = ∑s|psqs|). It is demonstrated that the second-order vibrational QDPT based on optimized coordinates (oc-VQDPT2) smoothly converges with respect to the order of the mode coupling, and outperforms the conventional one based on normal coordinates. Furthermore, an improved, fast algorithm is developed for optimizing the coordinates. First, the minimization of the VSCF energy is conducted in a restricted parameter space, in which only a portion of pairs of coordinates is selectively transformed. A rational index is devised for this purpose, which identifies the important coordinate pairs to mix from others that may remain unchanged based on the magnitude of harmonic coupling induced by the transformation. Second, a cubic force field (CFF) is employed in place of a quartic force field, which bypasses intensive procedures that arise due to the presence of the fourth-order force constants. It is found that oc-VSCF based on CFF together with the pair selection scheme yields the coordinates similar in character to the conventional ones such that the final vibrational energy is affected very little while gaining an order of magnitude acceleration. The proposed method is applied to ethylene and trans-1,3-butadiene. An accurate, multi-resolution potential, which combines the MP2 and coupled-cluster with singles, doubles, and perturbative triples level of electronic structure theory, is generated and employed in the oc-VQDPT2 calculation to obtain the fundamental tones as well as selected overtones/combination tones coupled to the fundamentals through the Fermi resonance. The calculated frequencies of ethylene and trans-1,3-butadiene are found to be in excellent agreement with the experimental values with a mean absolute error of 8 and 9 cm−1, respectively.

1.
J. M.
Bowman
,
J. Chem. Phys.
68
,
608
(
1978
).
2.
M. B.
Hansen
,
M.
Sparta
,
P.
Seidler
,
D.
Toffoli
, and
O.
Christiansen
,
J. Chem. Theory Comput.
6
,
235
(
2010
).
3.
M.
Keçeli
and
S.
Hirata
,
J. Chem. Phys.
135
,
134108
(
2011
).
4.
M. R.
Hermes
,
M.
Keçeli
, and
S.
Hirata
,
J. Chem. Phys.
136
,
234109
(
2012
).
5.
K. M.
Christoffel
and
J. M.
Bowman
,
Chem. Phys. Lett.
85
,
220
(
1982
).
6.
S.
Heislbetz
and
G.
Rauhut
,
J. Chem. Phys.
132
,
124102
(
2010
).
7.
Y.
Scribano
,
D. M.
Lauvergnat
, and
D. M.
Benoit
,
J. Chem. Phys.
133
,
094103
(
2010
).
8.
L. S.
Norris
,
M. A.
Ratner
,
A. E.
Roitberg
, and
R. B.
Gerber
,
J. Chem. Phys.
105
,
11261
(
1996
).
9.
O.
Christiansen
,
J. Chem. Phys.
119
,
5773
(
2003
).
10.
N.
Matsunaga
,
G. M.
Chaban
, and
R. B.
Gerber
,
J. Chem. Phys.
117
,
3541
(
2002
).
11.
K.
Yagi
,
S.
Hirata
, and
K.
Hirao
,
J. Chem. Phys.
127
,
034111
(
2007
).
12.
K.
Yagi
,
S.
Hirata
, and
K.
Hirao
,
Phys. Chem. Chem. Phys.
10
,
1781
(
2008
).
13.
O.
Christiansen
,
J. Chem. Phys.
120
,
2149
(
2004
).
14.
O.
Christiansen
,
J. Chem. Phys.
122
,
194105
(
2005
).
15.
M. R.
Hermes
and
S.
Hirata
,
J. Chem. Phys.
139
,
034111
(
2013
).
16.
G. M.
Chaban
,
J. O.
Jung
, and
R. B.
Gerber
,
J. Chem. Phys.
111
,
1823
(
1999
).
17.
K.
Yagi
,
T.
Taketsugu
,
K.
Hirao
, and
M. S.
Gordon
,
J. Chem. Phys.
113
,
1005
(
2000
).
18.
K.
Yagi
,
K.
Hirao
,
T.
Taketsugu
,
M. W.
Schmidt
, and
M. S.
Gordon
,
J. Chem. Phys.
121
,
1383
(
2004
).
19.
K.
Yagi
,
S.
Hirata
, and
K.
Hirao
,
Theor. Chem. Acc.
118
,
681
(
2007
).
20.
G.
Rauhut
,
J. Chem. Phys.
121
,
9313
(
2004
).
21.
M.
Sparta
,
D.
Toffoli
, and
O.
Christiansen
,
Theor. Chem. Acc.
123
,
413
(
2009
).
22.
M.
Sparta
,
M. B.
Hansen
,
E.
Matito
,
D.
Toffoli
, and
O.
Christiansen
,
J. Chem. Theory Comput.
6
,
3162
(
2010
).
23.
K.
Yagi
,
H.
Karasawa
,
S.
Hirata
, and
K.
Hirao
,
ChemPhysChem
10
,
1442
(
2009
).
24.
H.
Asami
,
K.
Yagi
,
M.
Ohba
,
S.
Urashima
, and
H.
Saigusa
,
Chem. Phys.
419
,
84
(
2013
).
25.
S.
Ishiuchi
,
K.
Yamada
,
S.
Chakraborty
,
K.
Yagi
, and
M.
Fujii
,
Chem. Phys.
419
,
145
(
2013
).
26.
J. M.
Bowman
,
S.
Carter
, and
X. C.
Huang
,
Int. Rev. Phys. Chem.
22
,
533
(
2003
).
27.
R. B.
Gerber
,
G. M.
Chaban
,
B.
Brauer
, and
Y.
Miller
, in
Theory and Applications of Computational Chemistry: The First Forty Years
, edited by
C. E.
Dykstra
,
G.
Frenking
,
K. S.
Kim
, and
G. E.
Scuseria
(
Elsevier
,
2005
), p.
165
.
28.
T. K.
Roy
and
R. B.
Gerber
,
Phys. Chem. Chem. Phys.
15
,
9468
(
2013
).
29.
O.
Christiansen
,
Phys. Chem. Chem. Phys.
9
,
2942
(
2007
).
30.
O.
Christiansen
,
Phys. Chem. Chem. Phys.
14
,
6672
(
2012
).
31.
D.
Oschetzki
,
M.
Neff
,
P.
Meier
,
F.
Pfeiffer
, and
G.
Rauhut
,
Croat. Chem. Acta
85
,
379
(
2012
).
32.
D. M.
Benoit
,
Front. Biosci.
14
,
4229
(
2009
).
33.
K.
Yagi
,
M.
Keçeli
, and
S.
Hirata
,
J. Chem. Phys.
137
,
204118
(
2012
).
34.
T. C.
Thompson
and
D. G.
Turhlar
,
J. Chem. Phys.
77
,
3031
(
1982
).
35.
R.
Lefebvre
,
Int. J. Quantum Chem.
23
,
543
(
1983
).
36.
Z.
Bačić
,
R. B.
Gerber
, and
M. A.
Ratner
,
J. Phys. Chem.
90
,
3606
(
1986
).
37.
N.
Moiseyev
,
Chem. Phys. Lett.
98
,
233
(
1983
).
38.
A.
Hidalgo
,
J.
Zúniga
,
J. M.
Francés
,
A.
Bastida
, and
A.
Requena
,
Int. J. Quantum Chem.
40
,
685
(
1991
).
39.
B.
Kirtman
,
J. Chem. Phys.
49
,
3890
(
1968
).
40.
I.
Shavitt
and
L. T.
Redmon
,
J. Chem. Phys.
73
,
5711
(
1980
).
41.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
42.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
43.
R. A.
Kendall
,
T. H.
Dunning
 Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
44.
S.
Carter
,
S. J.
Culik
, and
J. M.
Bowman
,
J. Chem. Phys.
107
,
10458
(
1997
).
45.
M. J.
Frisch
 et al, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford, CT,
2010
.
46.
K.
Yagi
, SINDO 3.4, RIKEN,
2013
.
47.
See supplementary material at http://dx.doi.org/10.1063/1.4866365 on the accuracy of the potential for calculating the vibrational frequencies of ethylene.
48.
J. L.
Duncan
and
G. E.
Robertson
,
J. Mol. Spectrosc.
145
,
251
(
1991
), and references therein.
49.
D. C.
McKean
,
N. C.
Craig
, and
Y. N.
Panchenko
,
J. Phys. Chem. A
110
,
8044
(
2006
).
50.
Y.
Furukawa
,
H.
Takeuchi
,
I.
Harada
, and
M.
Tasumi
,
Bull. Chem. Soc. Jpn.
56
,
392
(
1983
).
51.
P.
Seidler
,
T.
Kaga
,
K.
Yagi
,
O.
Christiansen
, and
K.
Hirao
,
Chem. Phys. Lett.
483
,
138
(
2009
).
52.
F.
Pfeiffer
,
G.
Rauhut
,
D.
Feller
, and
K. A.
Peterson
,
J. Chem. Phys.
138
,
044311
(
2013
).
53.
CPU: Core i7 3960X EE (15 MB Cache/6 cores/3.30 GHz), OS: Ubuntu, Compiler: Intel Fortran Compiler 12.4, BLAS/LAPACK: Intel MKL Library 10.3.
54.
P.
Carbonniere
and
V.
Barone
,
Chem. Phys. Lett.
392
,
365
(
2004
).
55.
M.
Neff
,
T.
Hrenar
,
D.
Oschetzki
, and
G.
Rauhut
,
J. Chem. Phys.
134
,
064105
(
2011
).

Supplementary Material

You do not currently have access to this content.