Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.

1.
W. J.
Baumgardner
,
J. J.
Choi
,
Y.-F.
Lim
, and
T.
Hanrath
,
J. Am. Chem. Soc.
132
,
9519
(
2010
).
2.
C. R.
Bealing
,
W. J.
Baumgardner
,
J. J.
Choi
,
T.
Hanrath
, and
R. G.
Hennig
,
ACS Nano
6
,
2118
(
2012
).
3.
D.-H.
Ha
,
M. A.
Islam
, and
R. D.
Robinson
,
Nano Lett.
12
,
5122
(
2012
).
4.
D.
Wang
,
H. L.
Xin
,
Y.
Yu
,
H.
Wang
,
E.
Rus
,
D. A.
Muller
, and
H. D.
Abruña
,
J. Am. Chem. Soc.
132
,
17664
(
2010
).
5.
G.
Liu
,
E.
Luais
, and
J. J.
Gooding
,
Langmuir
27
,
4176
(
2011
).
6.
J. J.
Choi
,
C. R.
Bealing
,
K.
Bian
,
K. J.
Hughes
,
W.
Zhang
,
D.-M.
Smilgies
,
R. G.
Hennig
,
J. R.
Engstrom
, and
T.
Hanrath
,
J. Am. Chem. Soc.
133
,
3131
(
2011
).
7.
J.
Chen
,
X.
Ye
,
S. J.
Oh
,
J. M.
Kikkawa
,
C. R.
Kagan
, and
C. B.
Murray
,
ACS Nano
7
,
1478
(
2013
).
8.
W.-K.
Koh
,
A. C.
Bartnik
,
F. W.
Wise
, and
C. B.
Murray
,
J. Am. Chem. Soc.
132
,
3909
(
2010
).
9.
D. F.
Moyano
and
V. M.
Rotello
,
Langmuir
27
,
10376
(
2011
).
10.
K.
Letchworth-Weaver
and
T. A.
Arias
,
Phys. Rev. B
86
,
075140
(
2012
).
11.
K. A.
Schwarz
,
R.
Sundararaman
,
K.
Letchworth-Weaver
,
T. A.
Arias
, and
R. G.
Hennig
,
Phys. Rev. B
85
,
201102
(
2012
).
12.
J. L.
Fattebert
and
F.
Gygi
,
Int. J. Quantum Chem.
93
,
139
(
2003
).
13.
S. A.
Petrosyan
,
A. A.
Rigos
, and
T. A.
Arias
,
J. Phys. Chem. B
109
,
15436
(
2005
).
14.
O.
Andreussi
,
I.
Dabo
, and
N.
Marzari
,
J. Chem. Phys.
136
,
064102
(
2012
).
15.
D.
Gunceler
,
K.
Letchworth-Weaver
,
R.
Sundararaman
,
K. A.
Schwarz
, and
T. A.
Arias
,
Modell. Simul. Mater. Sci. Eng.
21
,
074005
(
2013
).
16.
S.
Ismail-Beigi
and
T. A.
Arias
,
Comput. Phys. Commun.
128
,
1
(
2000
).
17.
R.
Sundararaman
,
D.
Gunceler
,
K.
Letchworth-Weaver
, and
T. A.
Arias
, JDFTx,
2012
, see http://jdftx.sourceforge.net.
18.
K.
Mathew
and
R. G.
Hennig
,
Vaspsol: Software Module for Solid/Liquid Interfaces for VASP
,
2013
, see http://vaspsol.mse.cornell.edu/.
19.
S. A.
Petrosyan
,
J.-F.
Briere
,
D.
Roundy
, and
T. A.
Arias
,
Phys. Rev. B
75
,
205105
(
2007
).
20.
R.
Sundararaman
and
T.
Arias
,
Comput. Phys. Commun.
185
,
818
825
(
2014
).
21.
C. J.
Cramer
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
760
(
2008
).
22.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
23.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
24.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
25.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
26.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
27.
P.
Giannozzi
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
28.
X.
Gonze
,
J.-M.
Beuken
,
R.
Caracas
,
F.
Detraux
,
M.
Fuchs
,
G.-M.
Rignanese
,
L.
Sindic
,
M.
Verstraete
,
G.
Zerah
,
F.
Jollet
 et al.,
Comput. Mater. Sci.
25
,
478
(
2002
).
29.
Computational Chemistry Comparison and Benchmark Database
,
NIST Standard Reference Database No. 101, Release 16a
, edited by
R. D.
Johnson
 III
(
NIST
,
Gaithersburg, MD
,
2012
), see http://cccbdb.nist.gov/.
30.
M.
Fishman
,
H. L.
Zhuang
,
K.
Mathew
,
W.
Dirschka
, and
R. G.
Hennig
,
Phys. Rev. B
87
,
245402
(
2013
).
31.
W. D.
Parker
,
J. W.
Wilkins
, and
R. G.
Hennig
,
Phys. Status Solidi B
248
,
267
(
2011
).
32.
R.
Kumar
,
S.
Pasupathi
,
B. G.
Pollet
, and
K.
Scott
,
Electrochim. Acta
109
,
365
(
2013
).
33.
S.
Billinge
,
Nature (London)
495
,
453
(
2013
).
34.
D. J.
Asunskis
,
I. L.
Bolotin
, and
L.
Hanley
,
J. Phys. Chem. C
112
,
9555
(
2008
).
35.
A. A. R.
Watt
,
D.
Blake
,
J. H.
Warner
,
E. A.
Thomsen
,
E. L.
Tavenner
,
H.
Rubinsztein-Dunlop
, and
P.
Meredith
,
J. Phys. D: Appl. Phys.
38
,
2006
(
2005
).
36.
J. D.
Patel
,
F.
Mighri
,
A.
Ajji
, and
T. K.
Chaudhuri
,
Mater. Chem. Phys.
132
,
747
(
2012
).
37.
W. J.
Baumgardner
,
K.
Whitham
, and
T.
Hanrath
,
Nano Lett.
13
,
3225
(
2013
).
38.
Y.
Kim
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
113
,
9109
(
2009
).
40.
T. N.
Truong
and
E. V.
Stefanovich
,
J. Phys. Chem.
99
,
14700
(
1995
).
41.
J. B.
Foresman
,
T. A.
Keith
,
K. B.
Wiberg
,
J.
Snoonian
, and
M. J.
Frisch
,
J. Phys. Chem.
100
,
16098
(
1996
).
42.
B.
Ensing
,
E. J.
Meijer
,
P. E.
Blöchl
, and
E. J.
Baerends
,
J. Phys. Chem. A
105
,
3300
(
2001
).
43.
M.
Frisch
,
G.
Trucks
,
H. B.
Schlegel
 et al., Gaussian 09 (Gaussian Inc., Wallingford, CT,
2009
), available online at www.gaussian.com/g_prod/g09.htm.
You do not currently have access to this content.