The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of reflection absorption infrared spectroscopy and temperature-programmed desorption spectra of O2 and O3 produced via two pathways: O + O and O2 + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O2 + O reactions is ∼150 K/kb. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley–Rideal nor the hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O3 formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O3 is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO2 and H2O in the ices.

1.
A. G. G. M.
Tielens
,
Rev. Mod. Phys.
85
,
1021
(
2013
).
2.
P. F.
Goldsmith
,
R.
Liseau
,
T. A.
Bell
 et al,
Astrophys. J.
737
,
96
(
2011
).
3.
B.
Larsson
,
R.
Liseau
, and
L.
Pagani
,
Astronom. Astrophys.
466
,
999
(
2007
).
4.
R.
Liseau
 et al,
Astronom. Astrophys.
541
,
A73
(
2012
).
5.
F.
Du
,
B.
Parise
, and
P.
Bergman
,
Astronom. Astrophys.
538
,
A91
(
2012
).
6.
J. E.
Chiar
,
Y. J.
Pendleton
,
L. J.
Allamandola
,
A. C. A.
Boogert
,
K.
Ennico
,
T. P.
Greene
,
T. R.
Geballe
,
J. V.
Keane
,
C. J.
Lada
,
R. E.
Mason
,
T. L.
Roellig
,
S. A.
Sandford
,
A. G. G. M.
Tielens
,
M. W.
Werner
,
D. C. B.
Whittet
,
L.
Decin
, and
K.
Eriksson
,
Astrophys. J.
731
,
9
(
2011
).
7.
H.
Mokrane
,
H.
Chaabouni
,
M.
Accolla
,
E.
Congiu
,
F.
Dulieu
,
M.
Chehrouri
, and
J. L.
Lemaire
,
Astrophys. J.
705
,
L195
(
2009
).
8.
C.
Romanzin
,
S.
Ioppolo
,
H. M.
Cuppen
,
E. F.
van Dishoeck
, and
H.
Linnartz
,
J. Chem. Phys.
134
,
084504
(
2011
).
9.
T.
Lamberts
,
H. M.
Cuppen
,
S.
Ioppolo
, and
H.
Linnartz
,
Phys. Chem. Chem. Phys.
15
,
8287
(
2013
).
10.
A. G. G. M.
Tielens
and
W.
Hagen
,
Astronom. Astrophys.
114
,
245T
(
1982
).
11.
H.
Chaabouni
,
M.
Minissale
,
G.
Manicó
,
E.
Congiu
,
J. A.
Noble
,
S.
Baouche
,
M.
Accolla
,
J. L.
Lemaire
,
V.
Pirronello
, and
F.
Dulieu
,
J. Chem. Phys.
137
,
234706
(
2012
).
12.
F.
Dulieu
,
L.
Amiaud
,
E.
Congiu
,
J.-H.
Fillion
,
E.
Matar
,
A.
Momeni
,
V.
Pirronello
, and
J. L.
Lemaire
,
Astronom. Astrophys.
512
,
A30
(
2010
).
13.
S.
Ioppolo
,
H. E.
Cuppen
,
C.
Romanzin
,
E. F.
van Dishoeck
, and
H.
Linnartz
,
Astrophys. J.
686
,
1474
(
2008
).
14.
N.
Miyauchi
,
H.
Hidaka
,
T.
Chigai
,
A.
Nagaoka
,
N.
Watanabe
, and
A.
Kouchi
,
Chem. Phys. Lett.
456
,
27
(
2008
).
15.
S.
Chapman
,
S.
Akasofu
,
B. B.
Fogle
, and
B.
Haurwitz
,
Sydney Chapman, Eighty: From His Friends
(
National Center for Atmospheric Research
,
U.S.
,
1968
).
16.
C. J.
Bennett
and
R. I.
Kaiser
,
Astrophys. J.
635
,
1362
(
2005
).
17.
C. P.
Ennis
,
C. J.
Bennett
, and
R. I.
Kaiser
,
Phys. Chem. Chem. Phys.
13
,
9469
(
2011
).
18.
B.
Sivaraman
,
C. S.
Jamieson
,
N. J.
Mason
, and
R. I.
Kaiser
,
Astrophys. J.
669
,
1414
(
2007
).
19.
D.
Jing
,
J.
He
,
J. R.
Brucato
,
G.
Vidali
,
L.
Tozzetti
, and
A.
De Sio
,
Astrophys. J.
756
,
98
(
2012
).
20.
A. V.
Benderskii
and
C. A.
Wight
,
J. Chem. Phys.
101
,
292
(
1994
).
21.
J. A.
Noble
,
E.
Congiu
,
F.
Dulieu
, and
H. J.
Fraser
,
Mon. Not. R. Astron. Soc.
421
,
768
(
2012
).
22.
L.
Amiaud
,
J.-H.
Fillion
,
S.
Baouche
,
F.
Dulieu
,
A.
Momeni
, and
J. L.
Lemaire
,
J. Chem. Phys.
124
,
094702
(
2006
).
23.
E.
Congiu
,
H.
Chaabouni
,
C.
Laon
,
P.
Parent
,
S.
Baouche
, and
F.
Dulieu
,
J. Chem. Phys.
137
,
054713
(
2012
).
24.
Z.
Djouadi
,
L.
D'Hendecourt
,
H.
Leroux
,
A. P.
Jones
,
J.
Borg
,
D.
Deboffle
, and
N.
Chauvin
,
Astronom. Astrophys.
440
,
179
(
2005
).
25.
C.
Schweitzer
and
R.
Schmidt
,
Chem. Rev.
103
,
1685
(
2003
).
26.
K.
Tanaka
and
I.
Tanaka
,
J. Chem. Phys.
59
,
5042
(
1973
).
27.
C. E.
Moore
,
Tables of Spectra of Hydrogen, Carbon, Nitrogen, Oxygen
, edited by
J. W.
Gallagher
(
CRC Press, Inc.
,
Boca Raton
,
1993
).
28.
E.
Congiu
,
E.
Matar
,
L. E.
Kristensen
,
F.
Dulieu
, and
J. L.
Lemaire
,
Mon. Notices R. Astronom. Soc.
397
(
1
),
L96
L100
(
2009
).
29.
L.
Amiaud
,
F.
Dulieu
,
J.-H.
Fillion
,
A.
Momeni
, and
J. L.
Lemaire
,
J. Chem. Phys.
127
,
144709
(
2007
).
30.
G. A.
Kimmel
,
Z.
Dohnálek
,
K. P.
Stevenson
,
R. S.
Smith
, and
B. D.
Kay
,
J. Chem. Phys.
114
,
5284
(
2001
).
31.
M.
Minissale
,
E.
Congiu
,
S.
Baouche
,
H.
Chaabouni
,
A.
Moudens
,
F.
Dulieu
,
M.
Accolla
,
S.
Cazaux
,
G.
Manicó
, and
V.
Pirronello
,
Phys. Rev. Lett.
111
,
053201
(
2013
).
32.
F.
Dulieu
,
E.
Congiu
,
J.
Noble
,
S.
Baouche
,
H.
Chaabouni
,
A.
Moudens
,
M.
Minissale
, and
S.
Cazaux
,
Sci. Rep.
3
,
1338
(
2013
).
33.
K. M.
Bulanin
,
A. V.
Alexeev
,
D. S.
Bystrov
,
J. C.
Lavalley
, and
A. A.
Tsyganenko
,
J. Chem. Phys.
98
,
5100
(
1994
).
34.
S. A.
Clough
and
F. X.
Kneizys
,
J. Chem. Phys.
44
,
1855
(
1966
).
35.
P. H.
Wine
,
J. M.
Nicovich
,
R. J.
Thompson
, and
A. R.
Ravishankara
,
J. Chem. Phys.
87
,
3948
(
1983
).
36.
J.
Harris
and
B.
Kasemo
,
Vacuum
31
,
511
(
1981
).
37.
R.
Martinazzo
,
S.
Assoni
,
G.
Marinoni
, and
G. F.
Tantardini
,
J. Chem. Phys.
120
,
8761
(
2004
).
38.
E.
Molinari
and
M.
Tomellini
,
Chem. Phys.
277
,
373
(
2002
).
39.
C.
Wei
and
G. L.
Haller
,
J. Chem. Phys.
105
,
810
(
1996
).
40.
A.
Dinger
,
C.
Lutterloh
, and
J.
Küppers
,
J. Chem. Phys.
114
,
5338
(
2001
).
41.
E.
Quintas-Sánchez
,
C.
Crespos
,
P.
Larrégaray
,
J.-C.
Rayez
,
L.
Martin-Gondre
, and
J.
Rubayo-Soneira
,
J. Chem. Phys.
138
,
024706
(
2013
).
42.
E. B.
Jenkins
,
Astrophys. J.
700
,
1299
(
2009
).
43.
D. C. B.
Whittet
,
Astrophys. J.
710
,
1009
(
2010
).
44.
P.
Caselli
,
T.
Stantcheva
,
O.
Shalabiea
,
V. I.
Shematovich
, and
E.
Herbst
,
Planetary Space Sci.
50
,
1257
(
2002
).
45.
G.
Strazzulla
and
R. E.
Johnson
, in
Comets in the Post-Halley Era
,
ASSL Series
Vol.
1
(
Kluwer
,
Dordrecht
,
1991
), p.
243
.
46.
S.
Madzunkov
,
B. J.
Shortt
,
J. A.
Macaskill
,
M. R.
Darrach
, and
A.
Chutjian
,
Phys. Rev. A
73
,
020901
(R) (
2006
).
47.
U.
Raut
and
R.
Baragiola
,
Astrophys. J.
737
,
L14
(
2011
).
48.
J. A.
Noble
,
F.
Dulieu
,
E.
Congiu
, and
H. J.
Fraser
,
Astrophys. J.
735
,
121
(
2011
).
49.
Y.
Oba
,
N.
Watanabe
,
A.
Kouchi
,
T.
Hama
, and
V.
Pirronello
,
Astrophys. J.
722
,
1598
(
2010
).
50.
M.
Minissale
,
E.
Congiu
,
G.
Manicó
,
V.
Pirronello
, and
F.
Dulieu
,
Astronom. Astrophys.
559
,
A49
(
2013
).
You do not currently have access to this content.