Understanding and controlling the performance of ceria nanoparticle (CNP) catalysts requires knowledge of the detailed structure and property of CNP surfaces and any attached functional groups. Here we report thermogravimetric analysis results showing that hydrothermally synthesized ∼30 nm CNPs are decorated with 12.9 hydroxyl groups per nm2 of CNP surface. Quantum mechanical calculations of the density and distribution of bound surface groups imply a scaling relationship for surface group density that balances formal charges in the functionalized CNP system. Computational results for CNPs with only hydroxyl surface groups yield a predicted density of bound hydroxyl groups for ∼30 nm CNPs that is ∼33% higher than measured densities. Quantitative agreement between predicted and measured hydroxyl surface densities is achieved when calculations consider CNPs with both –OH and –Ox surface groups. For this more general treatment of CNP surface functionalizations, quantum mechanical calculations predict a range of stable surface group configurations that depend on the chemical potentials of O and H, and demonstrate the potential to tune CNP surface functionalizations by varying temperature and/or partial pressures of O2 and H2O.

1.
S.
Carrettin
,
P.
Concepción
,
A.
Corma
,
J. M.
López Nieto
, and
V. F.
Puntes
,
Angew. Chem., Int. Ed.
43
,
2538
2540
(
2004
).
2.
A.
Primo
,
T.
Marino
,
A.
Corma
,
R.
Molinari
, and
H.
García
,
J. Am. Chem. Soc.
133
,
6930
6933
(
2011
).
3.
J. A.
Rodriguez
,
J.
Graciani
,
J.
Evans
,
J. B.
Park
,
F.
Yang
,
D.
Stacchiola
,
S. D.
Senanayake
,
S.
Ma
,
M.
Pérez
,
P.
Liu
,
J.
Fdez Sanz
, and
J.
Hrbek
,
Angew. Chem., Int. Ed.
48
,
8047
8050
(
2009
).
4.
C.
Gaudillèrea
,
P.
Vernouxa
,
C.
Mirodatosa
,
G.
Cabocheb
, and
D.
Farrusseng
,
Catal. Today
157
,
263
269
(
2010
).
5.
S.
Babu
,
A.
Velez
,
K.
Wozniak
,
J.
Szydlowska
, and
S.
Seal
,
Chem. Phys. Lett.
442
,
405
408
(
2007
).
6.
Y.
Xue
,
Q. F.
Luan
,
X.
Yang
,
D.
Yao
, and
K. B.
Zhou
,
J. Phys. Chem. C
115
,
4433
4438
(
2011
).
7.
M.
Molinari
,
S. S.
Parker
,
D. C.
Sayle
, and
M. S.
Islam
,
J. Phys. Chem. C
116
,
7073
7082
(
2012
).
8.
W.
Calleja
,
C.
Falcony
,
A.
Torres
,
M.
Aceves
, and
R.
Osorio
,
Thin Solid Films
270
,
114
117
(
1995
).
9.
W. O. R.
Horacio
and
E.
Bergna
,
Colloidal Silica: Fundamentals and Applications
(
CRC Press
,
London
,
2006
), p.
305
.
10.
V.
Kanniah
,
B. H.
Wang
,
Y.
Yang
, and
E. A.
Grulke
,
J. Appl. Polym. Sci.
125
,
165
174
(
2012
).
11.
M.
Zawadzki
,
J. Alloys Compd.
454
,
347
351
(
2008
).
12.
L.
Chen
,
P.
Fleming
,
V.
Morris
,
J. D.
Holmes
, and
M. A.
Morris
,
J. Phys. Chem. C
114
,
12909
12919
(
2010
).
13.
M.
Nolan
,
S.
Parker
, and
G.
Watson
,
J. Phys. Chem. B
110
,
2256
2262
(
2006
).
14.
M.
Fronzi
,
A.
Soon
,
B.
Delley
,
E.
Traversa
, and
C.
Stampfl
,
J. Chem. Phys.
131
,
104701
(
2009
).
15.
H. X.
Mai
,
L. D.
Sun
,
Y. W.
Zhang
,
R.
Si
,
W.
Feng
,
H. P.
Zhang
,
H. C.
Liu
, and
C. H.
Yan
,
J. Phys. Chem. B
109
,
24380
24385
(
2005
).
16.
A.
Ansari
and
A.
Kaushik
,
J. Semicond.
31
,
033001
(
2010
).
17.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
50
(
1996
).
18.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
19.
P. E.
Blöechl
,
Phys. Rev. B
50
,
17953
19979
(
1994
).
20.
S. L.
Dudarev
,
G. A.
Botton
,
S. Y.
Savrasov
,
C. J.
Humphreys
, and
A. P.
Sutton
,
Phys. Rev. B
57
,
1505
1509
(
1998
).
21.
J. L. F.
Da Silva
,
M. V.
Ganduglia-Pirovano
,
J.
Sauer
,
V.
Bayer
, and
G.
Kresse
,
Phys. Rev. B
75
,
045121
(
2007
).
22.
M.
Fronzi
,
S.
Piccinin
,
B.
Delley
,
E.
Traversa
, and
C.
Stampfl
,
Phys. Chem. Chem. Phys.
11
,
9188
9199
(
2009
).
23.
M. W.
Chase
 Jr.
,
NIST-JANAF Thermochemical Tables
4th ed. (
American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology
,
1998
).
24.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
,
J. Phys.: Condens. Matter
21
,
084204
(
2009
).
25.
Y.
Jiang
,
J. B.
Adams
, and
M.
van Schilfgaarde
,
J. Chem. Phys.
123
,
064701
(
2005
).
26.
Z.
Yang
,
G.
Luo
,
Z.
Lu
, and
K.
Hermansson
,
J. Chem. Phys.
127
,
074704
(
2007
).
27.
C. W.
Castleton
,
J.
Kullgren
, and
K.
Hermansson
,
J. Chem. Phys.
127
,
244704
(
2007
).
28.
M.
Anis-ur Rehman
and
A.
Abdullah
,
J. Supercond. Nov. Magn.
24
,
1095
1098
(
2011
).
29.
F.
Esch
,
S.
Fabris
,
L.
Zhou
,
T.
Montini
,
C.
Africh
,
P.
Fornasiero
,
G.
Comelli
, and
R.
Rosei
,
Science
309
,
752
755
(
2005
).
30.
S.
Babu
,
R.
Thanneeru
,
T.
Inerbaev
,
R.
Day
,
A. E.
Masunov
,
A.
Schulte
, and
S.
Seal
,
Nanotechnology
20
,
085713
(
2009
).
31.
M. V.
Ganduglia-Pirovano
,
J. L. F.
Da Silva
, and
J.
Sauer
,
Phys. Rev. Lett.
102
,
026101
(
2009
).
32.
A.
Migani
,
K. M.
Neyman
,
F.
Illas
, and
S. T.
Bromley
,
J. Chem. Phys.
131
,
064701
(
2009
).
You do not currently have access to this content.