We investigate with state of the art density functional theory the structural, electronic, and transport properties of a class of recently synthesized nanostructures based on triarylamine derivatives. First, we consider the single molecule precursors in the gas phase and calculate their static properties, namely (i) the geometrical structure of the neutral and cationic ions, (ii) the electronic structure of the frontier molecular orbitals, and (iii) the ionization potential, hole extraction potential, and internal reorganization energy. This initial study does not evidence any direct correlation between the properties of the individual molecules and their tendency to self-assembly. Subsequently, we investigate the charge transport characteristics of the triarylamine derivatives nanowires, by using Marcus theory. For one derivative we further construct an effective Hamiltonian including intermolecular vibrations and evaluate the mobility from the Kubo formula implemented with Monte Carlo sampling. These two methods, valid respectively in the sequential hopping and polaronic band limit, give us values for the room-temperature mobility in the range 0.1–12 cm2/Vs. Such estimate confirms the superior transport properties of triarylamine-based nanowires, and make them an attracting materials platform for organic electronics.

1.
For a review see
Z.
Ning
and
H.
Tian
,
Chem. Commun.
2009
,
5483
.
2.
E.
Moulin
,
F.
Niess
,
M.
Maaloum
,
E.
Buhler
,
I.
Nyrkova
, and
N.
Giuseppone
,
Angew. Chem. Int. Ed.
49
,
6974
(
2010
).
3.
V.
Faramarzi
,
F.
Niess
,
E.
Moulin
,
M.
Maaloum
,
J.-F.
Dayen
,
J.-B.
Beaufrand
,
S.
Zanettini
,
B.
Doudin
, and
N.
Giuseppone
,
Nat. Chem.
4
,
485
(
2012
).
4.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
);
R. A.
Marcus
,
Rev. Mod. Phys.
65
,
599
(
1993
).
5.
G. R.
Hutchison
,
M. A.
Ratner
, and
T. J.
Marks
,
J. Am. Chem. Soc.
127
,
16866
(
2005
).
6.
G. R.
Hutchison
,
M. A.
Ratner
, and
T. J.
Marks
,
J. Am. Chem. Soc.
127
,
2339
(
2005
).
7.
W.-Q.
Deng
and
W. A.
Goddard
 III
,
J. Phys. Chem. B
108
,
8614
(
2004
).
8.
G. D.
Mahan
,
Many-Particle Physics
(
Kluwer Academic/Plenum Publishers
,
1981
).
9.
L. B.
Schein
,
C. B.
Duke
, and
A. R.
McGhie
,
Phys. Rev. Lett.
40
,
197
(
1978
).
10.
N.
Karl
,
Synth. Metals
133–134
,
649
(
2003
).
11.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
);
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
12.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
);
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
13.
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
,
Phys. Rev. Lett.
42
,
1698
(
1979
);
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
,
Phys. Rev. B
22
,
2099
(
1980
).
14.
T.
Yanai
,
D.
Tew
, and
N.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
15.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
16.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
17.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, Gaussian 09, Revision A.01, Gaussian Inc., Wallingford, CT,
2009
.
18.
X.
Li
and
M. J.
Frisch
,
J. Chem. Theory Comput.
2
,
835
(
2006
).
19.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
20.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
21.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
22.
B.
Yang
,
S.-K.
Kim
,
H.
Xu
,
Y.-I.
Park
,
H.
Zhang
,
C.
Gu
,
F.
Shen
,
C.
Wang
,
D.
Liu
,
X.
Liu
,
M.
Hanif
,
S.
Tang
,
W.
Li
,
F.
Li
,
J.
Shen
,
J. W.
Park
, and
Y.
Ma
,
ChemPhysChem
9
,
2601
(
2008
).
23.
B. C.
Lin
,
C. P.
Cheng
, and
Z. P. M.
Lao
,
J. Phys. Chem. A
107
,
5241
(
2003
).
24.
M.
Malagoli
and
J. L.
Brédas
,
Chem. Phys. Lett.
327
,
13
(
2000
).
25.
G.
Meijer
,
G.
Berden
,
W. L.
Meerts
,
H.
Hunziker
,
M. S.
deVries
, and
H. R.
Wendt
,
Chem. Phys.
163
,
209
(
1992
).
26.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
,
Phys. Rev. Lett.
49
,
1691
(
1982
);
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. Lett.
51
,
1884
(
1983
).
27.
B.-C.
Wang
,
H.-R.
Liao
,
J.-C.
Chang
,
L.
Chen
, and
J.-T.
Yeh
,
J. Lumin.
124
,
333
(
2007
).
28.
Z.
Shuai
,
L.
Wang
, and
C.
Song
,
Theory of Charge Transport in Carbon Electronic Materials
(
Springer
,
2012
).
30.
J.
Kirkpatrick
and
J.
Nelson
,
J. Chem. Phys.
123
,
084703
(
2005
).
31.
J. L.
Brédas
,
D.
Beljonne
,
V.
Coropceanu
, and
J.
Cornil
,
Chem. Rev.
104
,
4971
(
2004
).
32.
B. C.
Lin
,
C. P.
Cheng
,
Z. Q.
You
, and
C. P.
Hsu
,
J. Am. Chem. Soc.
127
,
66
(
2005
).
33.
X.-K.
Chen
,
L.-Y.
Zou
,
A.-M.
Ren
, and
J.-X.
Fan
,
Phys. Chem. Chem. Phys.
13
,
19490
(
2011
).
34.
E. F.
Valeev
,
V.
Coropceanu
,
D. A.
da Silva Filho
,
S.
Salman
, and
J. L.
Brédas
,
J. Am. Chem. Soc.
128
,
9882
(
2006
).
35.
X.
Yang
,
Q.
Li
, and
Z.
Shuai
,
Nanotechnology
18
,
424029
(
2007
).
36.
S.
Kwon
,
K.-R.
Wee
,
J. W.
Kim
,
C.
Pac
, and
S. O.
Kang
,
J. Chem. Phys.
136
,
204706
(
2012
).
37.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J. L.
Brédas
,
Chem. Rev.
107
,
926
(
2007
).
38.
M.
Pope
and
C. E.
Swenberg
,
Electronic Processes in Organic Crystals and Polymers
(
Oxford University Press
,
New York
,
1999
).
39.
S.
Bhattacharya
,
M. S.
Ferreira
, and
S.
Sanvito
,
J. Phys.: Condens. Matter
23
,
316001
(
2011
).
40.
S.
Bhattacharya
and
S.
Sanvito
, “
Ab initio estimation of spin and charge transport properties of rubrene using maximally localized Wannier functions
,”
Phys. Rev. B
(unpublished).
41.
A.
Troisi
and
G.
Orlandi
,
Phys. Rev. Lett.
96
,
086601
(
2006
).
You do not currently have access to this content.