How do lipid molecules in membranes perform a flip-flop? The flip-flops of lipid molecules play a crucial role in the formation and flexibility of membranes. However, little has been determined about the behavior of flip-flops, either experimentally, or in molecular dynamics simulations. Here, we provide numerical results of the flip-flops of model lipid molecules in a model membrane and investigate the statistical properties, using millisecond-order coarse-grained molecular simulations (dissipative particle dynamics). We find that there are three different ways of flip-flops, which can be clearly characterized by their paths on the free energy surface. Furthermore, we found that the probability of the number of the flip-flops is well fitted by the Poisson distribution, and the probability density function for the inter-occurrence times of flip-flops coincides with that of the forward recurrence times. These results indicate that the occurrence of flip-flops is a Poisson process, which will play an important role in the flexibilities of membranes.

1.
L.
Frye
and
M.
Edidin
,
J. Cell Sci.
7
,
319
(
1970
).
2.
A.
Kusumi
,
C.
Nakada
,
K.
Ritchie
,
K.
Murase
,
K.
Suzuki
,
H.
Murakoshi
,
R.
Kasai
,
J.
Kondo
, and
T.
Fujiwara
,
Annu. Rev. Biophys. Biomol. Struct.
34
,
351
(
2005
).
3.
H.
McMahon
and
J.
Gallop
,
Nature (London)
438
,
590
(
2005
).
4.
J.
Hurley
,
E.
Boura
,
L.
Carlson
, and
B.
Różycki
,
Cell
143
,
875
(
2010
).
5.
T.
Baumgart
,
B.
Capraro
,
C.
Zhu
, and
S.
Das
,
Annu. Rev. Phys. Chem.
62
,
483
(
2011
).
6.
R.
Bruckner
,
S.
Mansy
,
A.
Ricardo
,
L.
Mahadevan
, and
J.
Szostak
,
Biophys. J.
97
,
3113
(
2009
).
7.
F.
Contreras
,
L.
Sánchez-Magraner
,
A.
Alonso
, and
F.
Goñi
,
FEBS Lett.
584
,
1779
(
2010
).
8.
W.
Wimley
and
T.
Thompson
,
Biochemistry
29
,
1296
(
1990
).
9.
J.
Bai
and
R.
Pagano
,
Biochemistry
36
,
8840
(
1997
).
10.
M.
Roseman
and
T.
Thompson
,
Biochemistry
19
,
439
(
1980
).
11.
S.
Hrafnsdóttir
,
J.
Nichols
, and
A.
Menon
,
Biochemistry
36
,
4969
(
1997
).
12.
M.
Nakano
,
M.
Fukuda
,
T.
Kudo
,
N.
Matsuzaki
,
T.
Azuma
,
K.
Sekine
,
H.
Endo
, and
T.
Handa
,
J. Phys. Chem. B
113
,
6745
(
2009
).
13.
J.
Liu
and
J.
Conboy
,
J. Am. Chem. Soc.
126
,
8376
(
2004
).
14.
J.
Liu
and
J. C.
Conboy
,
Biophys. J.
89
,
2522
(
2005
).
15.
R.
Homan
and
H.
Pownall
,
Biochim. Biophys. Acta
938
,
155
(
1988
).
16.
T.
Róg
,
L.
Stimson
,
M.
Pasenkiewicz-Gierula
,
I.
Vattulainen
, and
M.
Karttunen
,
J. Phys. Chem. B
112
,
1946
(
2008
).
17.
F.
Ogushi
,
R.
Ishitsuka
,
T.
Kobayashi
, and
Y.
Sugita
,
Chem. Phys. Lett.
522
,
96
(
2012
).
18.
G.
Parisio
,
M.
Sperotto
, and
A.
Ferrarini
,
J. Am. Chem. Soc.
134
,
12198
(
2012
).
19.
D.
Tieleman
and
S.
Marrink
,
J. Am. Chem. Soc.
128
,
12462
(
2006
).
20.
A.
Gurtovenko
and
I.
Vattulainen
,
J. Phys. Chem. B
111
,
13554
(
2007
).
21.
P. T.
Vernier
,
M. J.
Ziegler
,
Y.
Sun
,
W. V.
Chang
,
M. A.
Gundersen
, and
D. P.
Tieleman
,
J. Am. Chem. Soc.
128
,
6288
(
2006
).
22.
H.
Leontiadou
,
A.
Mark
, and
S.
Marrink
,
J. Am. Chem. Soc.
128
,
12156
(
2006
).
23.
S.
Kandasamy
and
R.
Larson
,
J. Chem. Phys.
125
,
074901
(
2006
).
24.
A.
Dickey
and
R.
Faller
,
Biophys. J.
92
,
2366
(
2007
).
25.
A.
Gurtovenko
,
O.
Onike
, and
J.
Anwar
,
Langmuir
24
,
9656
(
2008
).
26.
C.
Neale
,
W. D.
Bennett
,
D. P.
Tieleman
, and
R.
Pomès
,
J. Chem. Theory Comput.
7
,
4175
(
2011
).
27.
W. D.
Bennett
and
D. P.
Tieleman
,
J. Chem. Theory Comput.
7
,
2981
(
2011
).
28.
A. M.
Smondyrev
and
M. L.
Berkowitz
,
Biophys. J.
80
,
1649
(
2001
).
29.
S. Y.
Bhide
,
Z.
Zhang
, and
M. L.
Berkowitz
,
Biophys. J.
92
,
1284
(
2007
).
30.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
de Vries
,
J. Phys. Chem. B
111
,
7812
(
2007
).
31.
Z.
Zhang
,
L.
Lu
, and
M. L.
Berkowitz
,
J. Phys. Chem. B
112
,
3807
(
2008
).
32.
M. L.
Berkowitz
,
Biophys. Biochim. Acta
1788
,
86
(
2009
).
33.
T.
Akimoto
,
E.
Yamamoto
,
K.
Yasuoka
,
Y.
Hirano
, and
M.
Yasui
,
Phys. Rev. Lett.
107
,
178103
(
2011
).
34.
J.-H.
Jeon
,
H. M.-S.
Monne
,
M.
Javanainen
, and
R.
Metzler
,
Phys. Rev. Lett.
109
,
188103
(
2012
).
35.
S.
Ramachandran
,
P. S.
Kumar
, and
M.
Laradji
,
J. Chem. Phys.
129
,
125104
(
2008
).
36.
R.
Groot
and
P.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
37.
P.
Hoogerbrugge
and
J.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
38.
P.
Espanol
and
P.
Warren
,
Europhys. Lett.
30
,
191
(
1995
).
39.
F.
De Meyer
and
B.
Smit
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
3654
(
2009
).
40.
D.
Fedosov
,
B.
Caswell
,
S.
Suresh
, and
G.
Karniadakis
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
35
(
2011
).
41.
F. J.-M.
de Meyer
,
A.
Benjamini
,
J. M.
Rodgers
,
Y.
Misteli
, and
B.
Smit
,
J. Phys. Chem. B
114
,
10451
(
2010
).
42.
J. C.
Shillcock
and
R.
Lipowsky
,
Nat. Mater.
4
,
225
(
2005
).
43.
A.
Grafmüller
,
J.
Shillcock
, and
R.
Lipowsky
,
Phys. Rev. Lett.
98
,
218101
(
2007
).
44.
K.
Yang
and
Y.
Ma
,
Nat. Nanotechnol.
5
,
579
(
2010
).
45.
N.
Arai
,
K.
Yasuoka
, and
X.
Zeng
,
J. Am. Chem. Soc.
130
,
7916
(
2008
).
46.
N.
Arai
,
K.
Yasuoka
, and
X.
Zeng
,
Langmuir
28
,
2866
(
2012
).
47.
S.
Park
,
A.
Lytton-Jean
,
B.
Lee
,
S.
Weigand
,
G.
Schatz
, and
C.
Mirkin
,
Nature (London)
451
,
553
(
2008
).
48.
P.
Cigler
,
A.
Lytton-Jean
,
D.
Anderson
,
M.
Finn
, and
S.
Park
,
Nat. Mater.
9
,
918
(
2010
).
49.
H. M.
Ding
and
Y. Q.
Ma
,
Nanoscale
4
,
1116
(
2012
).
50.
H. M.
Ding
,
W. D.
Tian
, and
Y. Q.
Ma
,
ACS Nano
6
,
1230
(
2012
).
51.
J.
Shillcock
and
R.
Lipowsky
,
J. Chem. Phys.
117
,
5048
(
2002
).
52.
See supplementary material at http://dx.doi.org/10.1063/1.4863330 for movies of push-in, sliding, and rotation flip-flops.

Supplementary Material

You do not currently have access to this content.