Using molecular dynamics simulations, we investigate the temperature-dependent evolution of the first peak position/shape in pair distribution functions of liquids. For metallic liquids, the peak skews towards the left (shorter distance side) with increasing temperature, similar to the previously reported anomalous peak shift. Making use of constant-volume simulations in the absence of thermal expansion and change in inherent structure, we demonstrate that the apparent shift of the peak maximum can be a result of the asymmetric shape of the peak, as the asymmetry increases with temperature-induced spreading of neighboring atoms to shorter and longer distances due to the anharmonic nature of the interatomic interaction potential. These findings shed light on the first-shell expansion/contraction paradox for metallic liquids, aside from possible changes in local topological or chemical short-range ordering. The melts of covalent materials are found to exhibit an opposite trend of peak shift, which is attributed to an effect of the directionality of the interatomic bonds.

1.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature (London)
410
,
259
(
2001
).
2.
F. C.
Frank
,
Proc. R. Soc. London, Ser. A
215
,
43
(
1952
).
3.
C. A.
Angell
,
MRS Bull.
33
,
544
555
(
2008
).
4.
Z. H.
Jin
,
P.
Gumbsch
,
K.
Lu
, and
E.
Ma
,
Phys. Rev. Lett.
87
,
055703
(
2001
).
5.
Y. T.
Shen
,
T. H.
Kim
,
A. K.
Gangopadhy
, and
K. F.
Kelton
,
Phys. Rev. Lett.
102
,
057801
(
2009
).
6.
D.
Holland-Moritz
,
D. M.
Herlach
, and
K.
Urban
,
Phys. Rev. Lett.
71
,
1196
(
1993
).
7.
J. C.
Bendert
,
A. K.
Gangopadhyay
,
N. A.
Mauro
, and
K. F.
Kelton
,
Phys. Rev. Lett.
109
,
185901
(
2012
).
8.
C.
Tang
and
P.
Harrowell
,
Nat. Mater.
12
,
507
511
(
2013
).
9.
J.
Ding
,
Y. Q.
Cheng
,
H. W.
Sheng
, and
E.
Ma
,
Phys. Rev. B
85
,
060201
(
2012
).
10.
J.
Ding
,
Y. Q.
Cheng
, and
E.
Ma
,
Acta Mater.
61
,
3130
3140
(
2013
).
11.
Y. Q.
Cheng
and
E.
Ma
,
Prog. Mater. Sci.
56
,
379
473
(
2011
).
12.
H. B.
Lou
,
X. D.
Wang
,
Q. P.
Cao
,
D. X.
Zhang
,
J.
Zhang
,
T. D.
Hu
,
H. K.
Mao
, and
J. Z.
Jiang
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
10068
10072
(
2013
).
13.
G. W.
Lee
,
A. K.
Gangopadhyay
,
K. F.
Kelton
,
R. W.
Hyers
,
T. J.
Rathz
,
J. R.
Rogers
, and
D. S.
Robinson
,
Phys. Rev. Lett.
93
,
037802
(
2004
).
14.
P.
Ganesh
and
M.
Widom
,
Phys. Rev. B
74
,
134205
(
2006
).
15.
T. H.
Kim
and
K. F.
Kelton
,
J. Chem. Phys.
126
,
054513
(
2007
).
16.
N. A.
Mauro
,
J. C.
Bendert
,
A. J.
Vogt
,
J. M.
Gewin
, and
K. F.
Kelton
,
J. Chem. Phys.
135
,
044502
(
2011
).
17.
N. A.
Mauro
,
V.
Wessels
,
J. C.
Bendert
,
S.
Klein
,
A. K.
Gangopadhyay
,
M. J.
Kramer
,
S. G.
Hao
,
G. E.
Rustan
,
A.
Kreyssig
,
A. I.
Goldman
, and
K. F.
Kelton
,
Phys. Rev. B
83
,
184109
(
2011
).
18.
N. A.
Mauro
,
W.
Fu
,
J. C.
Bendert
,
Y. Q.
Cheng
,
E.
Ma
, and
K. F.
Kelton
,
J. Chem. Phys.
137
,
044501
(
2012
).
19.
K.
Georgarakis
,
D. V.
Louzguine-Luzgin
,
J.
Antonowicz
,
G.
Vaughan
,
A. R.
Yavari
,
T.
Egami
, and
A.
Inoue
,
Acta Mater.
59
,
708
716
(
2011
).
20.
W.
Kob
and
H.
Andersen
,
Phys. Rev. E
51
,
4626
(
1995
).
21.
T. H.
Kim
,
G. W.
Lee
,
B.
Sieve
,
A. K.
Gangopadhyay
,
R. W.
Hyers
,
T. J.
Rathz
,
J. R.
Rogers
,
D. S.
Robinson
,
K. F.
Kelton
, and
A. I.
Goldman
,
Phys. Rev. Lett.
95
,
085501
(
2005
).
22.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
23.
S.
Sastry
and
C. A.
Angell
,
Nat. Mater.
2
,
739
743
(
2003
).
24.
A.
Filipponi
and
A. D.
Cicco
,
Phys. Rev. B
51
,
12322
(
1995
).
25.
K. S.
Chang
,
Y. L.
Wang
,
C. H.
Kang
,
H. J.
Wei
,
Y. H.
Weng
, and
K. L.
Tung
,
J. Membr. Sci.
382
,
30
(
2011
).
26.
O.
Alexiadis
and
V. G.
Mavrantzas
,
Macromolecules
46
,
2450
2467
(
2013
).
27.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
2004
).
28.
M. P.
Allen
and
D. J.
Tidesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1989
).
29.
G.
Kresse
and
J.
Furthmüller
,
J. Comput. Mater. Sci.
6
,
15
50
(
1996
).
30.
F. H.
Stillinger
,
Science
267
,
1935
1939
(
1995
).
31.
D.
Wales
,
Energy Landscapes: Applications to Clusters, Biomolecules and Glasses
, 1st ed. (
Cambridge University Press
,
2004
).
32.
H. W.
Sheng
,
M. J.
Kramer
,
A.
Cadien
,
T.
Fujita
, and
M. W.
Chen
,
Phys. Rev. B
83
,
134118
(
2011
).
33.
Y. Q.
Cheng
,
E.
Ma
, and
H. W.
Sheng
,
Phys. Rev. Lett.
102
,
245501
(
2009
).
34.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
17979
(
1994
).
35.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
1775
(
1999
).
36.
M. L.
Falk
and
J. S.
Langer
,
Phys. Rev. E
57
,
7192
(
1998
).
37.
J.
Li
,
Modell. Simul. Mater. Sci. Eng.
11
,
173
(
2003
).
38.
J.
Ding
,
Y. Q.
Cheng
, and
E.
Ma
,
Appl. Phys. Lett.
101
,
121917
(
2012
).
39.
M.
Xu
,
Y. Q.
Cheng
,
H. W.
Sheng
, and
E.
Ma
,
Phys. Rev. Lett.
103
,
195502
(
2009
).
40.
P.
Häussler
,
Phys. Rep.
222
,
65
(
1992
).
41.
J.
Ding
,
Y. Q.
Cheng
, and
E.
Ma
, “
Atomic order beyond short-range scale in metallic glasses and liquids
” (unpublished).
42.
C. S.
Liu
,
Z. G.
Zhu
,
J. C.
Xia
, and
D. Y.
Sun
,
Phys. Rev. B
60
,
3194
(
1999
).
You do not currently have access to this content.