We present a simple thermostatting method suitable for nanoconfined fluid systems. Two conventional strategies involve thermostatting the fluid directly or employing a thermal wall that couples only the wall atoms with the thermostat. When only a thermal wall is implemented, the temperature control of the fluid is true to the actual experiment and the heat is transferred from the fluid to the walls. However, for large or complex systems it can often be computationally prohibitive to employ thermal walls. To overcome this limitation many researchers choose to freeze wall atoms and instead apply a synthetic thermostat to the fluid directly through the equations of motion. This, however, can have serious consequences for the mechanical, thermodynamic, and dynamical properties of the fluid by introducing unphysical behaviour into the system [Bernardi et al., J. Chem. Phys.132, 244706 (2010)]. In this paper, we propose a simple scheme which enables working with both frozen walls and naturally thermostatted liquids. This is done by superimposing the walls with oscillating particles, which vibrate on the edge of the fluid control volume. These particles exchange energy with the fluid molecules, but do not interact with wall atoms or each other, thus behaving as virtual particles. Their displacements violate the Lindemann criterion for melting, in such a way that the net effect would not amount to an additional confining surface. One advantage over standard techniques is the reduced computational cost, particularly for large walls, since they can be kept rigid. Another advantage over accepted strategies is the opportunity to freeze complex charged walls such as β-cristobalite. The method furthermore overcomes the problem with polar fluids such as water, as thermalized charged surfaces require higher spring constants to preserve structural stability, due to the effects of strong Coulomb interactions, thus inevitably degrading the thermostatting efficiency.

1.
B. J.
Kirby
,
Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices
(
Cambridge University Press
,
Cambridge
,
2010
).
2.
W.
Xiong
,
J. Z.
Liu
,
M.
Ma
,
Z.
Xu
,
J.
Sheridan
, and
Q.
Zheng
,
Phys. Rev. E
84
,
056329
(
2011
).
3.
B.
Xu
,
B.
Wang
,
T.
Park
,
Y.
Qiao
,
Q.
Zhou
, and
X.
Chen
,
J. Chem. Phys.
136
,
184701
(
2012
).
4.
J. A.
Thomas
,
A. J. H.
McGaughey
, and
O.
Kuter-Arnebeck
,
Int. J. Therm Sci.
49
,
281
(
2010
).
5.
K. P.
Travis
,
P. J.
Daivis
, and
D. J.
Evans
,
J. Chem. Phys.
103
,
1109
(
1995
).
6.
J. L.
McWhirter
and
G. N.
Patey
,
J. Chem. Phys.
117
,
2747
(
2002
).
7.
N. V.
Priezjev
and
S. M.
Troian
,
Phys. Rev. Lett.
92
,
018302
(
2004
).
8.
D. M.
Huang
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
,
Langmuir
24
,
1442
(
2008
).
9.
I. C.
Bourg
and
C. I.
Steefel
,
J. Phys. Chem. C
116
,
11556
(
2012
).
10.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
11.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
12.
D. J.
Evans
and
G. P.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
(
Cambridge University Press
,
Cambridge
,
2008
).
13.
H.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
14.
L.
Lue
,
O. G.
Jepps
,
J.
Delhommelle
, and
D. J.
Evans
,
Mol. Phys.
100
,
2387
(
2002
).
15.
K. P.
Travis
and
C.
Braga
,
J. Chem. Phys.
128
,
014111
(
2008
).
16.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
18.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
19.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation. From Algorithms to Applications
, 2nd ed. (
Academic Press
,
USA
,
2001
).
20.
M. P.
Allen
and
T. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
21.
D.
Rapaport
,
The Art of Molecular Dynamics Simulation
, 2nd ed. (
Cambridge University Press
,
New York
,
2004
).
22.
M. E.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
(
Oxford University Press
,
New York
,
2010
).
23.
R. J.
Sadus
,
Molecular Simulation of fluids: Theory, Algorithms and Object-Orientation
(
Elsevier
,
Amsterdam
,
1999
).
24.
S. K.
Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
,
J. Chem. Phys.
138
,
094701
(
2013
).
25.
F.
Schedin
,
A. K.
Geim
,
S. V.
Morozov
,
E. W.
Hill
,
P.
Blake
,
M. I.
Katsnelson
, and
K. S.
Novoselov
,
Nature Mater.
6
,
652
(
2007
).
26.
Y. M.
Lin
,
C.
Dimitrakopoulos
,
K. A.
Jenkins
,
D. B.
Farmer
,
H. Y.
Chiu
,
A.
Grill
, and
P.
Avouris
,
Science
327
,
662
(
2010
).
27.
D.
Cohen-Tanugi
and
J. C.
Grossman
,
Nano Lett.
12
,
3602
(
2012
).
28.
N. V.
Priezjev
,
J. Chem. Phys.
136
,
224702
(
2012
).
29.
P. A.
Thompson
and
M. O.
Robbins
,
Phys. Rev. A
41
,
6830
(
1990
).
30.
D. J.
Evans
and
G. P.
Morriss
,
Phys. Rev. Lett.
56
,
2172
(
1986
).
31.
K. P.
Travis
,
P. J.
Daivis
, and
D. J.
Evans
,
J. Chem. Phys.
103
,
10638
(
1995
).
32.
U.
Heinbuch
and
J.
Fischer
,
Phys. Rev. A
40
,
1144
(
1989
).
33.
S. Y.
Liem
,
D.
Brown
, and
J. H. R.
Clarke
,
Phys. Rev. A
45
,
3706
(
1992
).
34.
P.
Padilla
and
S.
Toxvaerd
,
J. Chem. Phys.
104
,
5956
(
1996
).
35.
W. G.
Hoover
,
C. G.
Hoover
, and
J.
Petravic
,
Phys. Rev. E
78
,
046701
(
2008
).
36.
P. J.
Daivis
,
B. A.
Dalton
, and
T.
Morishita
,
Phys. Rev. E
86
,
056707
(
2012
).
37.
S.
Bernardi
,
B. D.
Todd
, and
D. J.
Searles
,
J. Chem. Phys.
132
,
244706
(
2010
).
38.
X.
Yong
and
L. T.
Zhang
,
J. Chem. Phys.
138
,
084503
(
2013
).
39.
K. P.
Travis
,
P. J.
Daivis
, and
D. J.
Evans
,
J. Chem. Phys.
105
,
3893
(
1996
).
40.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
London
,
2006
).
41.
A.
Jabbarzadeh
,
J. D.
Atkinson
, and
R. I.
Tanner
,
J. Chem. Phys.
110
,
2612
(
1999
).
42.
D. W.
Brenner
,
Phys. Rev. B
42
,
9458
(
1990
).
43.
B. H.
Kim
,
A.
Beskok
, and
T.
Cagin
,
Microfluid. Nanofluid.
5
,
551
(
2008
).
44.
B. H.
Kim
,
A.
Beskok
, and
T.
Cagin
,
J. Chem. Phys.
129
,
174701
(
2008
).
45.
J. C.
Tully
,
J. Chem. Phys.
73
,
1975
(
1980
).
46.
J.
Blömer
and
A. E.
Beylich
,
Proc. Int. Symp. Rarefield Gas Dyn.
392
397
(
1996
).
47.
T.
Kimura
and
S.
Maruyama
,
Microscale Thermophys. Eng.
6
,
3
(
2002
).
48.
H.
Berro
,
N.
Fillot
,
P.
Vergne
,
T.
Tokumasu
,
T.
Ohara
, and
G.
Kikugawa
,
J. Chem. Phys.
135
,
134708
(
2011
).
49.
T.
Ohara
and
D.
Torii
,
J. Chem. Phys.
122
,
214717
(
2005
).
50.
S. C.
Maroo
and
J. N.
Chung
,
J. Nanopart. Res.
12
,
1913
(
2010
).
51.
S.
De Luca
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
, “
A molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions
,”
Langmuir
(submitted).
52.
M.
Gambhir
,
M. T.
Dove
, and
V.
Heine
,
Phys. Chem. Miner.
26
,
484
(
1999
).
53.
W. W.
Schmahl
,
I. P.
Swainson
,
M. T.
Dove
, and
A. Z.
Graeme-Barber
,
Kristallogr.
201
,
125
(
1992
).
54.
I. P.
Swainson
and
M. T.
Dove
,
J. Phys.: Condens. Matter.
7
,
1771
(
1995
).
55.
F.
Liu
,
S. H.
Garofalini
,
R. D.
King-Smith
, and
D.
Vanderbilt
,
Phys. Rev. Lett.
70
,
2750
(
1993
).
56.
L.
Huang
and
J.
Kieffer
,
J. Chem. Phys.
118
,
1487
(
2003
).
57.
L. T.
Zhuravlev
,
Colloids Surf., A
173
,
1
38
(
2000
).
58.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
59.
M. A.
Gonzalez
and
J. L. F.
Abascal
,
J. Chem. Phys.
132
,
096101
(
2010
).
60.
S.
De Luca
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
,
J. Chem. Phys.
138
,
154712
(
2013
).
61.
T. R.
Zeitler
,
J. A.
Greathouse
, and
R. T.
Cygan
,
Phys. Chem. Chem. Phys.
14
,
1728
(
2012
).
62.
J.
Yang
,
S.
Meng
,
L.
Xu
, and
E. G.
Wang
,
Phys. Rev. B
71
,
035413
(
2005
).
63.
J.
Puibasset
and
R. J.-M.
Pellenq
,
J. Chem. Phys.
119
,
9226
(
2003
).
64.
S. R.-V.
Castrillón
,
N.
Giovambattista
,
I. A.
Aksay
, and
P. G.
Debenedetti
,
J. Phys. Chem. B
113
,
1438
(
2009
).
65.
D.
Argyris
,
D. R.
Cole
, and
A.
Striolo
,
J. Phys. Chem. C
113
,
19591
(
2009
).
66.
P. L.
Kapitza
,
J. Phys (USSR)
4
,
181
(
1941
).
67.
J.-L. Barrat and
F.
Chiaruttini
,
Mol. Phys.
101
,
1605
(
2003
).
68.
G.
Ciccotti
,
M.
Ferrario
, and
J. P.
Ryckaert
,
Mol. Phys.
47
,
1253
(
1982
).
69.
Y. S.
Badyal
,
M.-L.
Saboungi
,
D. L.
Price
,
S. D.
Shastri
,
D. R.
Haeffner
, and
A. K.
Soper
,
J. Chem. Phys.
112
,
9206
(
2000
).
70.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
71.
M. J.
Allen
,
V. C.
Tung
, and
R. B.
Kaner
,
Chem. Rev.
110
,
132
(
2010
).
72.
S. K.
Kannam
,
B. D.
Todd
,
J. S.
Hansen
, and
P. J.
Daivis
,
J. Chem. Phys.
136
,
024705
(
2012
).
73.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
,
J. Phys. Chem. B
107
,
1345
(
2003
).
74.
T. A.
Ho
and
A.
Striolo
,
J. Chem. Phys.
138
,
054117
(
2013
).
75.
N.
Asproulis
and
D.
Drikakis
,
Phys. Rev. E
81
,
061503
(
2010
).
76.
N.
Asproulis
and
D.
Drikakis
,
Phys. Rev. E
84
,
031504
(
2011
).
77.
M.
Darbandi
,
M.
Sabouri
, and
S.
Jafari
,
Numer. Heat Transfer, Part B
63
,
248
(
2013
).
78.
C.
Liu
and
Z.
Li
,
J. Chem. Phys.
132
,
024507
(
2010
).
79.
D.
Wolf
,
P.
Keblinski
,
S. R.
Phillpot
, and
J.
Eggebrecht
,
J. Chem. Phys.
110
,
8254
(
1999
).
80.
J. S.
Hansen
,
T. B.
Schroder
, and
J. C.
Dyre
,
J. Phys. Chem. B
116
,
5738
(
2012
).
81.
P. A.
Thompson
and
S. M.
Troian
,
Nature (London)
389
,
360
(
1997
).
82.
S.
Maruyama
and
T.
Kimura
,
Therm. Sci. Eng.
7
,
63
(
1999
).
83.
T.
Ohara
and
D.
Suzuki
,
Microscale Thermophys. Eng.
4
,
189
(
2000
).
84.
J.
Koplik
,
J. R.
Banavar
, and
J. F.
Willemsen
,
Phys. Fluids A
1
,
781
(
1989
).
85.
F.-Q.
Song
and
J.-D.
Wang
,
J. Hydrodyn.
22
,
513
(
2010
).
86.
S.
Murada
and
I. K.
Puri
,
Appl. Phys. Lett.
92
,
133105
(
2008
).
87.
L.
Xue
,
P.
Keblinski
,
S. R.
Phillpot
,
S. U.-S.
Choi
, and
J. A.
Eastman
,
J. Chem. Phys.
118
,
337
(
2003
).
88.
B. D.
Todd
,
P. J.
Daivis
, and
D. J.
Evans
,
Phys. Rev. E
51
,
4362
(
1995
).
89.
B. D.
Todd
and
D. J.
Evans
,
J. Chem. Phys.
103
,
9804
(
1995
).
90.
B. D.
Todd
,
D. J.
Evans
, and
P. J.
Daivis
,
Phys. Rev. E
52
,
1627
(
1995
).
91.
C.
Liu
,
H.-B.
Fan
,
K.
Zhang
,
M. M. F.
Yuen
, and
Z.
Li
,
J. Chem. Phys.
132
,
094703
(
2010
).
92.
Z.
Ge
,
D. G.
Cahill
, and
P. V.
Braun
,
Phys. Rev. Lett.
96
,
186101
(
2006
).
93.
A. J.
Schmidt
,
J. D.
Alper
,
M.
Chiesa
,
G.
Chen
,
S. K.
Das
, and
K.
Hammad-Schifferli
,
J. Phys. Chem. C
112
,
13320
(
2008
).
94.
Z.
Liang
and
H.-L.
Tsai
,
Phys. Rev. E
83
,
061603
(
2011
).
95.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
You do not currently have access to this content.