Understanding the response of glasses to high pressure is of key importance for clarifying energy-dissipation and the origin of material damage during mechanical load. In the absence of shear bands or motile dislocations, pressure-induced deformation is governed by elastic and inelastic structural changes which lead to compaction of the glass network. Here, we report on a pressure-induced reconstructive amorphous-amorphous transition which was detected in sodium borosilicate glass by Raman and Brillouin scattering. The transition occurs through the formation of four-membered danburite-type rings of BO4 and SiO4-tetrahedra. We suggest that the inelastic pressure-resistance is governed by the Si-O-Si-backbone of the mixed borosilicate network. We further show that compaction is accompanied by increasing structural homogeneity and interpret this as a universal phenomenon in non-crystalline materials.

1.
P. H.
Poole
,
T.
Grande
,
C. A.
Angell
, and
P. F.
McMillan
, “
Polymorphic phase transitions in liquids and glasses
,”
Science
275
,
322
323
(
1997
).
2.
G. N.
Greaves
,
M. C.
Wilding
,
S.
Fearn
,
D.
Langstaff
,
F.
Kargl
,
S.
Cox
,
Q. V.
Van
,
O.
Majérus
,
C. J.
Benmore
,
R.
Weber
,
C. M.
Martin
, and
L.
Hennet
, “
Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts
,”
Science
322
,
566
570
(
2008
).
3.
S.
Aasland
and
P. F.
McMillan
, “
Density-driven liquid-liquid phase separation in the system AI2O3-Y2O3
,”
Nature (London)
369
,
633
636
(
1994
).
4.
M.
Grimsditch
, “
Polymorphism in amorphous SiO2
,”
Phys. Rev. Lett.
52
,
2379
2381
(
1984
).
5.
F.
Angeli
,
O.
Villain
,
S.
Schuller
,
T.
Charpentier
,
D.
de Ligny
,
L.
Bressel
, and
L.
Wondraczek
, “
Effect of temperature and thermal history on borosilicate glass structure
,”
Phys. Rev. B
85
,
054110
(
2012
).
6.
L.
Wondraczek
,
S.
Sen
,
H.
Behrens
, and
R. E.
Youngman
, “
Structure-energy map of alkali borosilicate glasses: Effects of pressure and temperature
,”
Phys. Rev. B
76
,
014202
(
2007
).
7.
C.
Sonneville
,
A.
Mermet
,
B.
Champagnon
,
C.
Martinet
,
J.
Margueritat
,
D.
de Ligny
,
T.
Deschamps
, and
F.
Balima
, “
Progressive transformations of silica glass upon densification
,”
J. Chem. Phys.
137
,
124505
(
2012
).
8.
D.
Wakabayashi
,
N.
Funamori
,
T.
Sato
, and
T.
Taniguchi
, “
Compression behavior of densified SiO2 glass
,”
Phys. Rev. B
84
,
144103
(
2011
).
9.
P. K.
Hung
and
N. T.
Nhan
, “
Polyamorphism in the silica glass
,”
Scr. Mater.
63
,
12
15
(
2010
).
10.
M.
Murakami
and
J. D.
Bass
, “
Spectroscopic evidence for ultrahigh-pressure polymorphism in SiO2 glass
,”
Phys. Rev. Lett.
104
,
025504
(
2010
).
11.
T.
Sato
and
N.
Funamori
, “
Sixfold-coordinated amorphous polymorph of SiO2 under high pressure
,”
Phys. Rev. Lett.
101
,
255502
(
2008
).
12.
B.
Champagnon
,
C.
Martinet
,
C.
Coussa
, and
T.
Deschamps
, “
Polyamorphism: Path to new high density glasses at ambient conditions
,”
J. Non-Cryst. Solids
353
,
4208
4211
(
2007
).
13.
D. J.
Lacks
, “
First-order amorphous-amorphous transformation in silica
,”
Phys. Rev. Lett.
84
,
4629
4632
(
2000
).
14.
K.
Winkel
,
E.
Mayer
, and
T.
Loerting
, “
Equilibrated high-density amorphous ice and its first-order transition to the low-density form
,”
J. Phys. Chem. B
115
,
14141
14148
(
2011
).
15.
G.
Malenkov
, “
Liquid water and ices: Understanding the structure and physical properties
,”
J. Phys.: Condens. Matter
21
,
283101
(
2009
).
16.
T.
Loerting
,
C.
Salzmann
,
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
, “
A second distinct structural “state” of high-density amorphous ice at 77 K and 1 bar
,”
Phys. Chem. Chem. Phys.
3
,
5355
5357
(
2001
).
17.
O.
Mishima
, “
Reversible first-order transition between two H2O amorphs at ∼0.2 GPa and ∼135 K
,”
J. Chem. Phys.
100
,
5910
5912
(
1994
).
18.
K.
Murata
and
H.
Tanaka
, “
Liquid–liquid transition without macroscopic phase separation in a water–glycerol mixture
,”
Nat. Mater.
11
,
436
443
(
2012
).
19.
A.
Ellison
and
I. A.
Cornejo
, “
Glass substrates for liquid crystal displays
,”
Int. J. Appl. Glass Sci.
1
,
87
103
(
2010
).
20.
J.-S.
Park
,
Y.
Kim
,
H.
Shin
,
J.-H.
Moon
, and
W.
Lim
, “
Calcium zinc borosilicate glass with high thermal expansion coefficient for LTCC applications
,”
J. Am. Cer. Soc.
91
,
3630
3633
(
2008
).
21.
D.
Käfer
,
M.
He
,
J.
Li
,
M. S.
Pambianchi
,
J.
Feng
,
J. C.
Mauro
, and
Z.
Bao
, “
Ultra-smooth and ultra-strong ion-exchanged glass as substrates for organic electronics
,”
Adv. Funct. Mater.
23
,
3233
3238
(
2013
).
22.
M. E.
Fleet
and
S.
Muthupari
, “
Coordination of boron in alkali borosilicate glasses using XANES
,”
J. Non-Cryst. Solids
255
,
233
241
(
1999
).
23.
A.
Winterstein-Beckmann
,
D.
Möncke
,
D.
Palles
,
E. I.
Kamitsos
, and
L.
Wondraczek
, “
Structure–property correlations in highly modified Sr, Mn-borate glasses
,”
J. Non-Cryst. Solids
376
,
165
174
(
2013
).
24.
W. L.
Konijnendijk
and
J. M.
Stevels
, “
The structure of borosilicate glasses studied by Raman scattering
,”
J. Non-Cryst. Solids
20
,
193
224
(
1976
).
25.
W. J.
Dell
,
P. J.
Bray
, and
S. Z.
Xiao
, “
11B NMR studies and structural modeling of Na2O·B2O3·SiO2 glasses of high soda content
,”
J. Non-Cryst. Solids
58
,
1
16
(
1983
).
26.
M. M.
Smedskjaer
,
J. C.
Mauro
,
R. E.
Youngman
,
C. L.
Hogue
,
M.
Potuzak
, and
Y.
Yue
, “
Topological principles of borosilicate glass chemistry
,”
J. Phys. Chem. B
115
,
12930
12946
(
2011
).
27.
S.
Sen
,
Z.
Xu
, and
J. F.
Stebbins
, “
Temperature dependent structural changes in borate, borosilicate and boroaluminate liquids: High-resolution 11B, 29Si and 27Al NMR studies
,”
J. Non-Cryst. Solids
226
,
29
40
(
1998
).
28.
L. S.
Du
,
J. R.
Allwardt
,
B. C.
Schmidt
, and
J. F.
Stebbins
, “
Pressure-induced structural changes in a borosilicate glass-forming liquid: Boron coordination, non-bridging oxygens, and network ordering
,”
J. Non-Cryst. Solids
337
,
196
200
(
2004
).
29.
L.
Wondraczek
,
S.
Krolikowski
, and
H.
Behrens
, “
Kinetics of pressure relaxation in a compressed alkali borosilicate glass
,”
J. Non-Cryst. Solids
356
,
1859
1862
(
2010
).
30.
L.
Wondraczek
and
H.
Behrens
, “
Molar volume, excess enthalpy, and Prigogine-Defay ratio of some silicate glasses with different (P,T) histories
,”
J. Chem. Phys.
127
,
154503
(
2007
).
31.
S.
Reibstein
,
L.
Wondraczek
,
D.
de Ligny
,
S.
Krolikowski
,
S.
Sirotkin
,
J. P.
Simon
,
V.
Martinez
, and
B.
Champagnon
, “
Structural heterogeneity and pressure-relaxation in compressed borosilicate glasses by in situ small angle X-ray scattering
,”
J. Chem. Phys.
134
,
204502
(
2011
).
32.
B.
Champagnon
,
L.
Wondraczek
, and
T.
Deschamps
, “
Boson peak, structural inhomogeneity, light scattering and transparency of silicate glasses
,”
J. Non-Cryst. Solids
355
,
712
714
(
2009
).
33.
J. D.
Barnett
,
S.
Block
, and
G. J.
Piermarini
, “
An optical fluorescence system for quantitative pressure measurement in the diamond-anvil cell
,”
Rev. Sci. Instrum.
44
,
1
9
(
1973
).
34.
R. A.
Forman
,
G. J.
Piermarini
,
J. D.
Barnett
, and
S.
Block
, “
Pressure measurement made by the utilization of ruby sharp-line luminescence
,”
Science
176
,
284
285
(
1972
).
35.
T.
Deschamps
,
C.
Martinet
,
D.
de Ligny
,
J. L.
Bruneel
, and
B.
Champagnon
, “
Low-frequency Raman scattering under high pressure in diamond anvil cell: Experimental protocol and application to GeO2 and SiO2 boson peaks
,”
J. Non-Cryst. Solids
358
,
3156
3160
(
2012
).
36.
V. K.
Malinovsky
,
V. N.
Novikov
, and
A. P.
Sokolov
, “
Investigation of structural correlations in disordered materials by Raman scattering measurements
,”
J. Non-Cryst. Solids
90
,
485
488
(
1987
).
37.
V. K.
Malinovsky
and
A. P.
Sokolov
, “
The nature of boson peak in Raman scattering in glasses
,”
Solid State Commun.
57
,
757
761
(
1986
).
38.
F. L.
Galeener
, “
Band limits and the vibrational spectra of tetrahedral glasses
,”
Phys. Rev. B
19
,
4292
4297
(
1979
).
39.
F. A.
Seifert
,
B. O.
Mysen
, and
D.
Virgo
, “
Three-dimensional network structure of quenched melts (glass) in the systems SiO2-NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4
,”
Am. Mineral.
67
,
696
717
(
1982
).
40.
R. M.
Badger
, “
The relation between the internuclear distances and force constants of molecules and its application to polyatomic molecules
,”
J. Chem. Phys.
3
,
710
714
(
1935
).
41.
R. M.
Badger
, “
A relation between internuclear distances and bond force constants
,”
J. Chem. Phys.
2
,
128
131
(
1934
).
42.
A. C.
Hannon
,
E. R.
Barney
, and
D.
Holland
, “
The structure of tin borate based glasses
,”
Eur. J. Glass Sci. Technol., Part B: Phys. Chem. Glasses
50
,
271
283
(
2009
).
43.
D. T.
Bowron
, “
An experimentally consistent atomistic structural model of silica glass
,”
Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.
149
,
166
170
(
2008
).
44.
D.
Möncke
,
D.
Ehrt
,
C.-P. E.
Varsamis
,
E. I.
Kamitsos
, and
A. G.
Kalampounias
, “
Thermal history of a low alkali borosilicate glass probed by infrared and Raman spectroscopy
,”
Eur. J. Glass Sci. Technol., Part A: Glass Technol.
47
,
133
137
(
2006
).
45.
F. L.
Galeener
, “
Planar rings in vitreous silica
,”
J. Non-Cryst. Solids
49
,
53
62
(
1982
).
46.
P. N.
Sen
and
M. F.
Thorpe
, “
Phonons in AX_{2} glasses: From molecular to band-like modes
,”
Phys. Rev. B
15
,
4030
4038
(
1977
).
47.
T.
Deschamps
,
C.
Martinet
,
D.
de Ligny
, and
B.
Champagnon
, “
Elastic anomalous behavior of silica glass under high-pressure: In situ Raman study
,”
J. Non-Cryst. Solids
355
,
1095
1098
(
2009
).
48.
B.
Champagnon
,
C.
Martinet
,
M.
Boudeulle
,
D.
Vouagner
,
C.
Coussa
,
T.
Deschamps
, and
L.
Grosvalet
, “
High pressure elastic and plastic deformations of silica: In situ diamond anvil cell Raman experiments
,”
J. Non-Cryst. Solids
354
,
569
573
(
2008
).
49.
E.
Duval
,
N.
Garcia
,
A.
Boukenter
, and
J.
Serughetti
, “
Correlation effects on Raman scattering from low-energy vibrational modes in fractal and disordered systems I. Theory
,”
J. Chem. Phys.
99
,
2040
2045
(
1993
).
50.
T.
Achibat
,
A.
Boukenter
, and
E.
Duval
, “
Correlation effects on Raman scattering from low-energy vibrational modes in glasses. II. Experimental results
,”
J. Chem. Phys.
99
,
2046
2051
(
1993
).
51.
H. M.
Flores-Ruiz
,
G. G.
Naumis
, and
J. C.
Phillips
, “
Heating through the glass transition: A rigidity approach to the boson peak
,”
Phys. Rev. B
82
,
214201
(
2010
).
52.
B.
Rufflé
,
D. A.
Parshin
,
E.
Courtens
, and
R.
Vacher
, “
Boson peak and its relation to acoustic attenuation in glasses
,”
Phys. Rev. Lett.
100
,
015501
(
2008
).
53.
W.
Schirmacher
,
G.
Ruocco
, and
T.
Scopigno
, “
Acoustic attenuation in glasses and its relation with the boson peak
,”
Phys. Rev. Lett.
98
,
025501
(
2007
).
54.
E.
Duval
,
A.
Mermet
, and
L.
Saviot
, “
Boson peak and hybridization of acoustic modes with vibrations of nanometric heterogeneities in glasses
,”
Phys. Rev. B
75
,
024201
(
2007
).
55.
V. L.
Gurevich
,
D. A.
Parshin
, and
H. R.
Schober
, “
Anharmonicity, vibrational instability, and the Boson peak in glasses
,”
Phys. Rev. B
67
,
094203
(
2003
).
56.
F.
Léonforte
,
A.
Tanguy
,
J. P.
Wittmer
, and
J. L.
Barrat
, “
Inhomogeneous elastic response of silica glass
,”
Phys. Rev. Lett.
97
,
055501
(
2006
).
57.
B.
Mantisi
,
S.
Adichtchev
,
S.
Sirotkin
,
L.
Rafaelly
,
L.
Wondraczek
,
H.
Behrens
,
C.
Marcenat
,
N. V.
Surovtsev
,
A.
Pillonnet
,
E.
Duval
,
B.
Champagnon
, and
A.
Mermet
, “
Non-Debye normalization of the glass vibrational density of states in mildly densified silicate glasses
,”
J. Phys.: Condens. Matter
22
,
025402
(
2010
).
58.
S. P.
Best
,
R. J. H.
Clark
,
C. L.
Hayward
, and
R.
Withnall
, “
Polarized single-crystal Raman spectroscopy of danburite, CaB2Si2O8
,”
J. Raman Spectrosc.
25
,
557
563
(
1994
).
59.
J.
Wu
,
J.
Deubener
,
J. F.
Stebbins
,
L.
Grygarova
,
H.
Behrens
,
L.
Wondraczek
, and
Y.
Yue
, “
Structural response of a highly viscous aluminoborosilicate melt to isotropic and anisotropic compressions
,”
J. Chem. Phys.
131
,
104504
(
2009
).
60.
H.
Tran
,
S.
Clement
,
R.
Vialla
,
D.
Vandembroucq
, and
B.
Ruffle
, “
Micro-Brillouin spectroscopy mapping of the residual density field induced by Vickers indentation in a soda-lime silicate glass
,”
Appl. Phys. Lett.
100
,
231901
(
2012
).
61.
S. N.
Tkachev
,
M. H.
Manghnani
, and
Q.
Williams
, “
In situ Brillouin spectroscopy of a pressure-induced apparent second-order transition in a silicate glass
,”
Phys. Rev. Lett.
95
,
057402
(
2005
).
62.
A.
Polian
and
M.
Grimsditch
, “
Room-temperature densification of a-SiO2 versus pressure
,”
Phys. Rev. B
41
,
6086
6087
(
1990
).
63.
M.
Grimsditch
,
R.
Bhadra
, and
Y.
Meng
, “
Brillouin scattering from amorphous materials at high pressures
,”
Phys. Rev. B
38
,
7836
7838
(
1988
).
64.
T.
Deschamps
,
C.
Martinet
,
J. L.
Bruneel
, and
B.
Champagnon
, “
Soda-lime silicate glass under hydrostatic pressure and indentation: A micro-Raman study
,”
J. Phys.: Condens. Matter
23
,
035402
(
2011
).
65.
L.
Wondraczek
,
J. C.
Mauro
,
J.
Eckert
,
U.
Kühn
,
J.
Horbach
,
J.
Deubener
, and
T.
Rouxel
, “
Towards ultrastrong glasses
,”
Adv. Mater.
23
,
4578
4586
(
2011
).
You do not currently have access to this content.