Transport through crowded environments is often classified as anomalous, rather than classical, Fickian diffusion. Several studies have sought to describe such transport processes using either a continuous time random walk or fractional order differential equation. For both these models the transport is characterized by a parameter α, where α = 1 is associated with Fickian diffusion and α < 1 is associated with anomalous subdiffusion. Here, we simulate a single agent migrating through a crowded environment populated by impenetrable, immobile obstacles and estimate α from mean squared displacement data. We also simulate the transport of a population of such agents through a similar crowded environment and match averaged agent density profiles to the solution of a related fractional order differential equation to obtain an alternative estimate of α. We examine the relationship between our estimate of α and the properties of the obstacle field for both a single agent and a population of agents; we show that in both cases, α decreases as the obstacle density increases, and that the rate of decrease is greater for smaller obstacles. Our work suggests that it may be inappropriate to model transport through a crowded environment using widely reported approaches including power laws to describe the mean squared displacement and fractional order differential equations to represent the averaged agent density profiles.

1.
M.
Weiss
,
M.
Elsner
,
F.
Kartberg
, and
T.
Nilsson
,
Biophys. J.
87
,
3518
(
2004
).
2.
R. J.
Ellis
,
Trends Biochem. Sci.
26
,
597
604
(
2001
).
3.
J. A.
Dix
and
A.
Verkman
,
Annu. Rev. Biophys.
37
,
247
(
2008
).
6.
E.
Vilaseca
,
A.
Isvoran
,
S.
Madurga
,
I.
Pastor
,
J.
Garcés
, and
F.
Mas
,
Phys. Chem. Chem. Phys.
13
,
7396
(
2011
).
7.
E.
Vilaseca
,
I.
Pastor
,
A.
Isvoran
,
S.
Madurga
,
J.
Garcés
, and
F.
Mas
,
Theor. Chem. Acc.
128
,
795
(
2011
).
8.
A.
Isvoran
,
E.
Vilaseca
,
F.
Ortega
,
M.
Cascante
, and
F.
Mas
,
J. Serb. Chem. Soc.
71
,
75
(
2006
).
9.
A.
Isvoran
,
E.
Vilaseca
,
L.
Unipan
,
J.
Garcés
, and
F.
Mas
,
Rev. Roum. Chim.
53
,
415
(
2008
).
10.
A.
Wedemeier
,
H.
Merlitz
,
C.-X.
Wu
, and
J.
Langowski
,
J. Chem. Phys.
127
,
045102
(
2007
).
11.
A.
Wedemeier
,
T.
Zhang
,
H.
Merlitz
,
C.-X.
Wu
, and
J.
Langowski
,
J. Chem. Phys.
128
,
155101
(
2008
).
12.
A.
Wedemeier
,
H.
Merlitz
,
C.-X.
Wu
, and
J.
Langowski
,
J. Chem. Phys.
131
,
064905
(
2009
).
13.
A.
Wedemeier
,
H.
Merlitz
, and
J.
Langowski
,
Europhys. Lett.
88
,
38004
(
2009
).
14.
R.
Metzler
and
J.
Kladter
,
Phys. Rep.
339
,
1
(
2000
).
15.
I. M.
Sokolov
,
J.
Klafter
, and
A.
Blumen
,
Phys. Today
55
,
48
(
2002
).
16.
B.
Henry
,
T.
Langlands
, and
S.
Wearne
,
Phys. Rev. E
74
,
031116
(
2006
).
17.
J.-P.
Bouchaud
and
A.
Georges
,
Phys. Rep.
195
,
127
(
1990
).
18.
D. S.
Banks
and
C.
Fradin
,
Biophys. J.
89
,
2960
(
2005
).
19.
G.
Guigas
,
C.
Kalla
, and
M.
Weiss
,
Biophys. J.
93
,
316
(
2007
).
20.
H.
Sanabria
,
Y.
Kubota
, and
M. N.
Waxham
,
Biophys. J.
92
,
313
(
2007
).
21.
A.
Kicheva
,
P.
Pantazis
,
T.
Bollenbach
,
Y.
Kalaidzidis
,
T.
Bittig
,
F.
Jülicher
, and
M.
González-Gaitán
,
Science
315
,
521
(
2007
).
22.
I.
Podlubny
,
Fractional Differential Equations
(
Elsevier Science
,
1998
).
23.
K.
Oldham
and
J.
Spanier
,
The Fractional Calculus
(
Dover Publications Incorporated
,
2006
).
24.
D.
Stauffer
and
A.
Aharony
,
Introduction to Percolation Theory
(
Taylor and Francis
,
1992
).
25.
T. M.
Liggett
,
Interacting Particle Systems
(
Springer
,
2005
).
26.
D. T.
Gillespie
,
J. Phys. Chem.
81
,
2340
(
1977
).
27.
M. J.
Simpson
,
K. A.
Landman
, and
B. D.
Hughes
,
Physica A
388
,
399
(
2009
).
28.
See supplementary material at http://dx.doi.org/10.1063/1.4864000 for plots of ũ(x,t) with ϕ = 0.00, 0.25 (Figs. 7 and 8) and images of the error surfaces (Figs. 9– 12).
29.
D. W.
Marquardt
,
J. Soc. Ind. Appl. Math.
11
,
431
(
1963
).
30.
K.
Levenberg
,
Q. Appl. Math.
2
,
164
(
1994
).
31.
S. B.
Yuste
,
L.
Acedo
, and
K.
Lindenberg
,
Phys. Rev. E
69
,
036126
, (
2004
).
32.
S. B.
Yuste
and
K.
Lindenberg
,
Phys. Rev. Lett.
87
,
118301
(
2001
).
33.
E.
Abad
,
S. B.
Yuste
, and
K.
Lindenberg
,
Phys. Rev. E
81
,
031115
(
2010
).

Supplementary Material

You do not currently have access to this content.