The UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm−1 resolution in a supersonic jet. The electronic origin at 32 252 cm−1 exhibits methyl torsional subbands that originate from the |$0A_{1}^{{\prime \prime }}$|0A1 (l = 0) and 1E (l = ±1) torsional levels. These and further torsional bands that appear up to |$0_0^0+230$|000+230 cm−1 allow to fit the threefold (V3) barriers of the torsional potentials as |$|V^{\prime \prime }_3|\break = 50$||V3|=50 cm−1 in the S0 and |$|V^{\prime }_3 |=126$||V3|=126 cm−1 in the S1 state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of |$V^{\prime \prime }_3=20$|V3=20 cm−1 and |$V^{\prime }_3\break =115$|V3=115 cm−1. The |$0_0^0$|000 rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis 1ππ* excitation. The residual 25% c-axis polarization may indicate coupling of the 1ππ* to the close-lying 1nπ* state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated 1nπ oscillator strength is only 6% of that of the 1ππ* transition. The 1ππ* vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm−1. The methyl torsion and the low-frequency out-of-plane |$\nu ^{\prime }_1$|ν1 and |$\nu ^{\prime }_2$|ν2 vibrations are strongly coupled in the 1ππ* state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the 1ππ* spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys.134, 114307 (2011)]. From the Lorentzian broadening needed to fit the |$0_0^0$|000 contour of 9M-2AP, the 1ππ* lifetime is τ ⩾ 120 ps, reflecting a rapid nonradiative transition.

1.
C. R.
Guest
,
R. A.
Hochstrasser
,
L. C.
Sowers
, and
D. P.
Millar
,
Biochemistry
30
,
3271
(
1991
).
2.
J. T.
Stivers
,
Nucl. Acids Res.
26
,
3837
(
1998
).
3.
Y.
Jiao
,
S.
Stringfellow
, and
H.
Yu
,
J. Biomol. Struct. Dyn.
19
,
929
(
2002
).
4.
D. C.
Ward
,
E.
Reich
, and
L.
Stryer
,
J. Biol. Chem.
244
,
1228
(
1969
).
5.
A.
Holmén
,
B.
Norden
, and
B.
Albinsson
,
J. Am. Chem. Soc.
119
,
3114
(
1997
).
6.
R. K.
Neely
,
S. W.
Magennis
,
D. T. F.
Dryden
, and
A. C.
Jones
,
J. Phys. Chem. B
108
,
17606
(
2004
).
7.
R. K.
Neely
,
D.
Daujotyte
,
S.
Grazulis
,
S. W.
Magennis
,
D. T. F.
Dryden
,
S.
Klimašauskas
, and
A. C.
Jones
,
Nucleic Acids Res.
33
,
6953
(
2005
).
8.
L.
Serrano-Andrés
,
M.
Merchán
, and
A.
Borin
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
8691
(
2006
).
9.
S.
Perun
,
A. L.
Sobolewski
, and
W.
Domcke
,
Mol. Phys.
104
,
1113
(
2006
).
10.
K. A.
Seefeld
,
C.
Plützer
,
D.
Lowenich
,
T.
Häber
,
R.
Linder
,
K.
Kleinermanns
,
J.
Tatchen
, and
C. M.
Marian
,
Phys. Chem. Chem. Phys.
7
,
3021
(
2005
).
11.
S.
Lobsiger
,
R. K.
Sinha
,
M.
Trachsel
, and
S.
Leutwyler
,
J. Chem. Phys.
134
,
114307
(
2011
).
12.
K.
Feng
,
G.
Engler
,
K.
Seefeld
, and
K.
Kleinermanns
,
ChemPhysChem
10
,
886
(
2009
).
13.
R. A.
Walker
,
E. C.
Richard
,
K.-T.
Lu
, and
J. C.
Weisshaar
,
J. Phys. Chem.
99
,
12422
(
1995
).
14.
L. H.
Spangler
,
Annu. Rev. Phys. Chem.
48
,
481
(
1997
).
15.
P. J.
Morgan
,
L.
Alvarez-Valtierra
, and
D. W.
Pratt
,
J. Phys. Chem. A
113
,
13221
(
2009
).
16.
S.
Lobsiger
,
H. M.
Frey
,
S.
Leutwyler
,
P.
Morgan
, and
D.
Pratt
,
J. Phys. Chem. A
115
,
13281
(
2011
).
17.
TURBOMOLE V6.1 2009, a development of Universität Karlsruhe (TH) and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH; available from http://www.turbomole.com.
18.
See supplementary material at http://dx.doi.org/10.1063/1.4862913 for extra information on 9-methylaminopurine CC2 calculated geometries, amino inversion potentials and synthesis.
19.
M.
Hedayatullah
,
J. Heterocycl. Chem.
19
,
249
(
1982
).
20.
S.
Lobsiger
,
H. M.
Frey
, and
S.
Leutwyler
,
Phys. Chem. Chem. Phys.
12
,
5032
(
2010
).
21.
S.
Lobsiger
and
S.
Leutwyler
,
J. Phys. Chem. Lett.
3
,
3576
(
2012
).
22.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC Research Press
,
1998
).
23.
A.
Bauder
, “
Fundamentals in rotational spectroscopy
,” in
Handbook of High Resolution Spectroscopy
, edited by
M.
Quack
and
F.
Merkt
(
John Wiley and Sons Ltd.
,
Chichester, UK
,
2011
).
24.
Interactive Data Language, Version 7.1, ITT Visual Information Solutions,
2009
, see www.ittvis.com/idl.
25.
C. M.
Western
, PGOPHER 6.0, a program for simulating rotational structure, University of Bristol,
2012
, see pgopher.chm.bris.ac.uk.
26.
M. A.
Trachsel
,
S.
Lobsiger
, and
S.
Leutwyler
,
J. Phys. Chem. B
116
,
11081
(
2012
).
27.
S.
Lobsiger
,
M. A.
Trachsel
,
H. M.
Frey
, and
S.
Leutwyler
,
J. Phys. Chem. B
117
,
6106
(
2013
).
28.
K.
Okuyama
,
N.
Mikami
, and
M.
Ito
,
Laser Chem.
7
,
197
(
1987
).
30.
W. B.
Tzeng
and
K.
Narayanan
,
J. Mol. Spectrosc.
446
,
93
(
1998
).
31.
W. B.
Tzeng
,
K.
Narayanan
,
J. L.
Lin
, and
C. C.
Tung
,
Spectrochim. Acta Part A
55
,
153
(
1998
).
32.
R. K.
Sinha
,
S.
Lobsiger
,
M.
Trachsel
, and
S.
Leutwyler
,
J. Phys. Chem. A
115
,
6208
(
2011
).

Supplementary Material

You do not currently have access to this content.