Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

1.
H.-W.
Jochims
,
M.
Schwell
,
H.
Baumgärtel
, and
S.
Leach
,
Chem. Phys.
314
,
263
(
2005
).
2.
K.-W.
Choi
,
D.-S.
Ahn
,
J.-H.
Lee
, and
S. K.
Kim
,
Chem. Comm.
2007
,
1041
.
3.
Y.
Hu
and
E. R.
Bernstein
,
J. Chem. Phys.
128
,
164311
(
2008
).
4.
L.
Zhang
,
Y.
Pan
,
H.
Guo
,
T.
Zhang
,
L.
Sheng
,
F.
Qi
,
P.-K.
Lo
, and
K.-C.
Lau
,
J. Phys. Chem. A
113
,
5838
(
2009
).
5.
Y.
Pan
,
L.
Zhang
,
T.
Zhang
,
H.
Guo
,
X.
Hong
,
L.
Sheng
, and
F.
Qi
,
Phys. Chem. Chem. Phys.
11
,
1189
(
2009
).
6.
H.
Guo
,
L.
Zhang
,
L.
Deng
,
L.
Jia
,
Y.
Pan
, and
F.
Qi
,
J. Phys. Chem. A
114
,
3411
(
2010
).
7.
G. L.
Gasper
,
L. K.
Takahashi
,
J.
Zhou
,
M.
Ahmed
,
J. F.
Moore
, and
L.
Hanley
,
Anal. Chem.
82
,
7472
(
2010
).
8.
J.-W.
Shin
,
F.
Dong
,
M.
Grisham
,
J. J.
Rocca
, and
E. R.
Bernstein
,
Chem. Phys. Lett.
506
,
161
(
2011
).
9.
D.
Ghosh
,
A.
Golan
,
L. K.
Takahashi
,
A. I.
Krylov
, and
M.
Ahmed
,
J. Phys. Chem. Lett.
3
,
97
(
2012
).
10.
K.
Fujii
,
K.
Akamatsu
, and
A.
Yokoya
,
Surf. Sci.
528
,
249
(
2003
).
11.
Z.
Deng
,
I.
Bald
,
E.
Illenberger
, and
M. A.
Huels
,
Phys. Rev. Lett.
95
,
153201
(
2005
).
12.
I.
Bald
,
Z.
Deng
,
E.
Illenberger
, and
M. A.
Huels
,
Phys. Chem. Chem. Phys.
8
,
1215
(
2006
).
13.
F.
Alvarado
,
S.
Bari
,
R.
Hoekstra
, and
T.
Schlathölter
,
Phys. Chem. Chem. Phys.
8
,
1922
(
2006
).
14.
Z.
Deng
,
I.
Bald
,
E.
Illenberger
, and
M. A.
Huels
,
J. Chem. Phys.
127
,
144715
(
2007
).
15.
G.
Vall-Ilosera
,
M. A.
Huels
,
M.
Coreno
,
A.
Kivimäki
,
K.
Jakubowska
,
M.
Stankiewicz
, and
E.
Rachlew
,
ChemPhysChem
9
,
1020
(
2008
).
16.
Z.
Deng
,
I.
Bald
,
E.
Illenberger
, and
M. A.
Huels
,
Angew. Chem., Int. Ed.
47
,
9509
(
2008
).
17.
S.
Ptasińska
,
S.
Denifl
,
P.
Scheier
, and
T. P.
Märk
,
J. Chem. Phys.
120
,
8505
(
2004
).
18.
J. R.
Srinivasan
,
L. J.
Romano
, and
R. J.
Levis
,
J. Phys. Chem.
99
,
13272
(
1995
).
19.
A.
Bhattacharya
,
Y. Q.
Guo
, and
E. R.
Bernstein
,
J. Phys. Chem. A
113
,
811
(
2009
).
20.
Y. Q.
Guo
,
A.
Bhattacharya
, and
E. R.
Bernstein
,
J. Chem. Phys.
134
,
024318
(
2011
).
21.
Y. Q.
Guo
,
A.
Bhattacharya
, and
E. R.
Bernstein
,
J. Chem. Phys.
128
,
034303
(
2008
).
22.
M.
Greenfield
,
Y. Q.
Guo
, and
E. R.
Bernstein
,
Chem. Phys. Lett.
430
,
277
(
2006
).
23.
M.
Staniforth
and
V. G.
Stavros
,
Proc. R. Soc. London, Ser. A
469
,
20130458
(
2013
).
24.
J.-W.
Shin
and
E. R.
Bernstein
,
J. Chem. Phys.
130
,
214306
(
2009
).
25.
Y. J.
Shi
,
S.
Consta
,
A. K.
Das
,
B.
Mallik
,
D.
Lacey
, and
R. H.
Lipson
,
J. Chem. Phys.
116
,
6990
(
2002
).
26.
Y. J.
Hu
,
H. B.
Fu
, and
E. R.
Bernstein
,
J. Chem. Phys.
125
,
154306
(
2006
).
27.
Y. J.
Hu
,
H. B.
Fu
, and
E. R.
Bernstein
,
J. Chem. Phys.
125
,
184308
(
2006
).
28.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 09, Revision C.01, Gaussian, Inc., Wallingford, CT,
2009
.
29.
E. J.
Cocinero
,
A.
Lesarri
,
P.
Écija
,
Á.
Cimas
,
B. G.
Davis
,
F. J.
Basterretxea
,
J. A.
Fernández
, and
F.
Castaño
,
J. Am. Chem. Soc.
135
,
2845
(
2013
).
30.
X.
Xu
and
W. A.
Goddard
 III
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
2673
(
2004
).
31.
J. V.
Ortiz
,
J. Chem. Phys.
104
,
7599
(
1996
).
32.
J. V.
Ortiz
and
V. G.
Zakrzewski
,
J. Chem. Phys.
105
,
2762
(
1996
).
33.
O.
González-Magaña
,
M.
Tiemens
,
G.
Reitsma
,
L.
Boschman
,
M.
Door
,
S.
Bari
,
P. O.
Lahaie
,
J. R.
Wagner
,
M. A.
Huels
,
R.
Hoekstra
, and
T.
Schlathölter
,
Phys. Rev. A
87
,
032702
(
2013
).
34.
H.
Guo
,
L.
Zhang
,
L.
Deng
,
L.
Jia
,
Y.
Pan
, and
F.
Qi
,
J. Phys. Chem. A
114
,
3411
(
2010
).
35.
S.
Pilling
,
A. F.
Lago
,
L. H.
Coutinho
,
R. B.
de Castilho
,
G. G. B.
de Souza
, and
A. N.
de Brito
,
Rapid Commun. Mass Spectrom.
21
,
3646
(
2007
).
36.
O.
Plekan
,
V.
Feyer
,
R.
Richter
,
M.
Coreno
,
M.
de Simone
,
K. C.
Prince
, and
V.
Carravetta
,
J. Phys. Chem. A
111
,
10998
(
2007
).
37.
M.
Geronés
,
M. F.
Erben
,
R. M.
Romano
, and
C. O. D.
Védova
,
J. Phys. Chem. A
112
,
2228
(
2008
).
38.
M.
Geronés
,
A. J.
Downs
,
M. F.
Erben
,
M.
Ge
,
R. M.
Romano
,
L.
Yao
, and
C. O. D.
Védova
,
J. Phys. Chem. A
112
,
5947
(
2008
).
39.
O.
Plekan
,
M.
Coreno
,
V.
Feyer
,
A.
Moise
,
R.
Richter
,
M.
de Simone
,
R.
Sankari
, and
K. C.
Prince
,
Phys. Scr.
78
,
058105
(
2008
).
40.
V.
Feyer
,
O.
Plekan
,
R.
Richter
,
M.
Coreno
, and
K. C.
Prince
,
Chem. Phys.
358
,
33
(
2009
).
41.
M.
Klessinger
and
J.
Michl
,
Excited States and Photochemistry of Organic Molecules
(
VCH Publishers, Inc.
,
New York
,
1995
), pp.
179
192
.
42.
N. J.
Turro
,
V.
Ramamurthy
, and
J. C.
Scaiano
,
Modern Molecular Photochemistry of Organic Molecules
(
University Science Books
,
Sausalito, CA
,
2010
), pp.
319
382
.
43.
A.
Bhattacharya
,
Y. Q.
Guo
, and
E. R.
Bernstein
,
Acc. Chem. Res.
43
,
1476
(
2010
).
44.
A.
Bhattacharya
,
J.-W.
Shin
,
K. J.
Clawson
, and
E. R.
Bernstein
,
Phys. Chem. Chem. Phys.
12
,
9700
(
2010
).
45.
Y. Q.
Guo
,
A.
Bhattacharya
, and
E. R.
Bernstein
,
J. Phys. Chem. A
115
,
9349
(
2011
).
46.
Z.
Yu
and
E. R.
Bernstein
,
J. Phys. Chem. A
117
,
1756
(
2013
).
47.
F.
Dong
,
S.
Heinbuch
,
Y.
Xie
,
J. J.
Rocca
, and
E. R.
Bernstein
,
J. Am. Chem. Soc.
130
,
1932
(
2008
).
48.
S.-G.
He
,
Y.
Xie
,
F.
Dong
,
S.
Heinbuch
,
E.
Jakubikova
,
J. J.
Rocca
, and
E. R.
Bernstein
,
J. Phys. Chem. A
112
,
11067
(
2008
).
49.
F.
Dong
,
S.
Heinbuch
,
Y.
Xie
,
J. J.
Rocca
, and
E. R.
Bernstein
,
J. Phys. Chem. A
113
,
3029
(
2009
).
50.
F.
Dong
,
S.
Heinbuch
,
Y.
Xie
,
J. J.
Rocca
, and
E. R.
Bernstein
,
Phys. Chem. Chem. Phys.
12
,
2569
(
2010
).
51.
B.
Herrera
,
O.
Dolgounitcheva
,
V. G.
Zakrzewski
,
A.
Toro-Labbé
, and
J. V.
Ortiz
,
J. Phys. Chem. A
108
,
11703
(
2004
).
52.
C. T.
Falzon
and
F.
Wang
,
J. Chem. Phys.
123
,
214307
(
2005
).
53.
W.
Adcock
,
M. J.
Brunger
,
I. E.
McCarthy
,
M. T.
Michalewicz
,
W.
von Niessen
,
F.
Wang
,
E.
Weigold
, and
D. A.
Winkler
,
J. Am. Chem. Soc.
122
,
3892
(
2000
).
54.
D. M.
Close
,
J. Phys. Chem. A
115
,
2900
(
2011
).
55.
A. A.
Planckaert
,
J.
Doucet
, and
C.
Sandorfy
,
J. Chem. Phys.
60
,
4846
(
1974
).
56.
See supplementary material at http://dx.doi.org/10.1063/1.4862829 for comparison of experimental and computational ionization energies of tetrahydropyran.
57.
T. P.
Debies
and
J. W.
Rabalais
,
J. Electron. Spectrosc. Relat. Phenom.
3
,
315
(
1974
).
58.
Y.
Zheng
,
P.
Cloutier
,
D. J.
Hunting
,
J. R.
Wagner
, and
L.
Sanche
,
J. Am. Chem. Soc.
126
,
1002
(
2004
).
59.
D. R.
Phillips
and
J. A.
McCloskey
,
Int. J. Mass Spectrom. Ion Processes
128
,
61
(
1993
).

Supplementary Material

You do not currently have access to this content.