Long known as a fully polarized band with a near vanishing depolarization ratio [ηs = 0.05, W. Holzer and R. Ouillon, Chem. Phys. Lett.24, 589 (1974)], the 2ν5 Raman overtone of SF6 has so far been considered as of having a prohibitively weak anisotropic spectrum [D. P. Shelton and L. Ulivi, J. Chem. Phys.89, 149 (1988)]. Here, we report the first anisotropic spectrum of this overtone, at room temperature and for 13 gas densities ranging between 2 and 27 amagat. This spectrum is 10 times broader and 50 times weaker than the isotropic counterpart of the overtone [D. Kremer, F. Rachet, and M. Chrysos, J. Chem. Phys.138, 174308 (2013)] and its profile much more sensitive to pressure effects than the profile of the isotropic spectrum. From our measurements an accurate value for the anisotropy matrix-element |⟨000020|Δα|000000⟩| was derived and this value was found to be comparable to that of the mean-polarizability

$\left|\left\langle 000020\right|\bar{ \alpha }\left|000000\right\rangle \right|$
000020α¯000000⁠. Among other conclusions our study offers compelling evidence that, in Raman spectroscopy, highly polarized bands or tiny depolarization ratios are not necessarily incompatible with large polarizability anisotropy transition matrix-elements. Our findings and the way to analyze them suggest that new strategies should be developed on the basis of the complementarity inherent in independent incoherent Raman experiments that run with two different incident-beam polarizations, and on concerted efforts to ab initiocalculate accurate data for first and second polarizability derivatives. Values for these derivatives are still rarities in the literature of SF6.

1.
D. A.
Long
,
The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules
(
Wiley
, Chichester,
UK
,
2002
).
2.
G. C.
Tabisz
, in
Molecular Spectroscopy
(A Specialist Periodical Report), edited by
R. F.
Barrow
,
D. A.
Long
, and
J.
Sheridan
, (
Chemical Society
,
London
,
1979
), Vol.
6
, pp.
136
173
.
3.
E. B.
Wilson
 Jr.
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra
(
Dover
,
New York
,
1980
).
4.
L.
Frommhold
,
Adv. Chem. Phys.
46
,
1
(
2007
).
5.
Collision- and Interaction-Induced Spectroscopy
, edited by
G. C.
Tabisz
and
M. N.
Neuman
(
Kluwer
,
Dordrecht
,
1995
).
6.
T.
Bancewicz
,
Y. Le
Duff
, and
J.-L.
Godet
,
Adv. Chem. Phys.
119
,
267
(
2002
).
7.
J.-M.
Hartmann
,
C.
Boulet
, and
D.
Robert
,
Collisional Effects on Molecular Spectra: Laboratory Experiments and Model, Consequences for Applications
(
Elsevier
,
Amsterdam
,
2008
).
8.
I. A.
Verzhbitskiy
,
M.
Chrysos
,
F.
Rachet
, and
A. P.
Kouzov
,
Phys. Rev. A
81
,
012702
(
2010
).
9.
M.
Chrysos
and
I. A.
Verzhbitskiy
,
Phys. Rev. A
81
,
042705
(
2010
).
10.
I. A.
Verzhbitskiy
,
M.
Chrysos
, and
A. P.
Kouzov
,
Phys. Rev. A
82
,
052701
(
2010
).
11.
M.
Chrysos
,
I. A.
Verzhbitskiy
,
F.
Rachet
, and
A. P.
Kouzov
,
J. Chem. Phys.
134
,
044318
(
2011
).
12.
M.
Chrysos
,
I. A.
Verzhbitskiy
,
F.
Rachet
, and
A. P.
Kouzov
,
J. Chem. Phys.
134
,
104310
(
2011
).
13.
I. A.
Verzhbitskiy
,
A. P.
Kouzov
,
F.
Rachet
, and
M.
Chrysos
,
J. Chem. Phys.
134
,
194305
(
2011
).
14.
I. A.
Verzhbitskiy
,
A. P.
Kouzov
,
F.
Rachet
, and
M.
Chrysos
,
J. Chem. Phys.
134
,
224301
(
2011
).
15.
S. M.
El-Sheikh
,
G. C.
Tabisz
, and
R. T.
Pack
,
J. Chem. Phys.
92
,
4234
(
1990
).
16.
G.
Maroulis
,
Chem. Phys. Lett.
312
,
255
(
1999
).
17.
T.
Bancewicz
,
J.-L.
Godet
, and
G.
Maroulis
,
J. Chem. Phys.
115
,
8547
(
2001
).
18.
J.-L.
Godet
,
F.
Rachet
,
Y. Le
Duff
,
K.
Nowicka
, and
T.
Bancewicz
,
J. Chem. Phys.
116
,
5337
(
2002
).
19.
Y. Le
Duff
,
J.-L.
Godet
,
T.
Bancewicz
, and
K.
Nowicka
,
J. Chem. Phys.
118
,
11009
(
2003
).
20.
If the Cartesian coordinates of the XY6 atoms are X(0, 0, 0), Y1(0, 0, R), Y2(0, 0, −R), Y3(R, 0, 0), Y4(− R, 0, 0), Y5(0, R, 0), and Y6(0, −R, 0), and R is the extension of the bond XY at equilibrium, then the symmetry coordinate of the ν5 vibration reads
$\frac{1}{2}R(\alpha _{35}-\alpha _{36}-\alpha _{45}+\alpha _{46})$
12R(α35α36α45+α46)
, where αab is the angle between the bonds XYa and XYb.
21.
W.
Holzer
and
R.
Ouillon
,
Chem. Phys. Lett.
24
,
589
(
1974
).
22.
D. P.
Shelton
and
L.
Ulivi
,
J. Chem. Phys.
89
,
149
(
1988
).
23.
D.
Kremer
,
F.
Rachet
, and
M.
Chrysos
,
J. Chem. Phys.
138
,
174308
(
2013
).
24.
The meaning of the two double-superscript quantities I(⊥∥) and I(⊥⊥) is scattering intensity recorded at the output when the incident beam is polarized perpendicular (⊥) to the scattering plane (first superscript) and the output beam analyzed in the direction parallel (∥) and perpendicular (⊥) to the scattering plane, respectively (second superscript).
25.
F.
Rachet
,
M.
Chrysos
,
C.
Guillot-Noël
, and
Y. Le
Duff
,
Phys. Rev. Lett.
84
,
2120
(
2000
).
26.
F.
Rachet
,
Y. Le
Duff
,
C.
Guillot-Noël
, and
M.
Chrysos
,
Phys. Rev. A
61
,
062501
(
2000
).
27.
28.
M.
Chrysos
,
A. P.
Kouzov
,
N. I.
Egorova
, and
F.
Rachet
,
Phys. Rev. Lett.
100
,
133007
(
2008
).
29.
S.
Dixneuf
,
M.
Chrysos
, and
F.
Rachet
,
J. Chem. Phys.
131
,
074304
(
2009
).
30.
Confusion between symbols k and ϕ, often used indifferently to denote cubic force constants, is regularly source of errors in matrix-element calculations and of misunderstandings regarding the real physical significance of these constants; in this context, see, for instance, a recent comment by
M.
Chrysos
and
D.
Kremer
,
Int. J. Quantum Chem.
113
,
2634
(
2013
).
31.
B. J.
Krohn
and
J.
Overend
,
J. Phys. Chem.
88
,
564
(
1984
).
32.
D. P.
Hodgkinson
,
J. C.
Barrett
, and
A. G.
Robiette
,
Mol. Phys.
54
,
927
(
1985
).
33.
D. P.
Hodgkinson
,
R. K.
Heenan
,
A. R.
Hoy
, and
A. G.
Robiette
,
Mol. Phys.
48
,
193
(
1983
).
34.
J. J.
Hurley
,
D. R.
Defibaugh
, and
M. R.
Moldover
,
Int. J. Thermophys.
21
,
739
(
2000
).
35.
B. P.
Stoicheff
,
Can. J. Phys.
35
,
730
(
1957
).
36.
J.
Rychlewski
,
J. Chem. Phys.
78
,
7252
(
1983
).
37.
C.
Schwartz
and
R. J. Le
Roy
,
J. Mol. Spectrosc.
121
,
420
(
1987
).
38.
The chosen function was given the form g(ν) = H[β(ν − νs)]CG(ν), with H the Heaviside step function, C and β free parameters, and
$G(\nu )\break =\frac{\beta ^{\alpha }(\nu -\nu _{s})^{\alpha -1}}{(\alpha -1)!}\exp [ -\beta (\nu -\nu _{s})]$
G(ν)=βα(ννs)α1(α1)!exp[β(ννs)]
the unity-normalized shape function for a gamma distribution probability density with random variable ν − νs, shape α(= 2) and rate β. This function, whose choice was dictated by probability theory, turned out to faithfully reproduce the exponential decrease of the O and S branches and their rise from the origin (ν = νs). The converged M0 values for the branches O and S are 1.71 × 10−54 cm6 and 1.61 × 10−54 cm6, respectively.
You do not currently have access to this content.