We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals—the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

1.
T.
Helgaker
,
M.
Jaszuński
, and
K.
Ruud
,
Chem. Rev.
99
,
293
(
1999
).
2.
T.
Helgaker
,
S.
Coriani
,
P.
Jørgensen
,
K.
Kristensen
,
J.
Olsen
, and
K.
Ruud
,
Chem. Rev.
112
,
543
(
2012
).
3.
E. I.
Tellgren
,
A.
Soncini
, and
T.
Helgaker
,
J. Chem. Phys.
129
,
154114
(
2008
).
4.
E. I.
Tellgren
,
S. S.
Reine
, and
T.
Helgaker
,
Phys. Chem. Chem. Phys.
14
,
9492
(
2012
).
5.
E. I.
Tellgren
,
T.
Helgaker
, and
A.
Soncini
,
Phys. Chem. Chem. Phys.
11
,
5489
(
2009
).
6.
K. K.
Lange
,
E. I.
Tellgren
,
M. R.
Hoffmann
, and
T.
Helgaker
,
Science
337
,
327
(
2012
).
7.
C. J.
Grayce
and
R. A.
Harris
,
Phys. Rev. A
50
,
3089
(
1994
).
8.
G.
Vignale
and
M.
Rasolt
,
Phys. Rev. Lett.
59
,
2360
(
1987
).
9.
G.
Vignale
and
M.
Rasolt
,
Phys. Rev. B
37
,
10685
(
1988
).
10.
K.
Capelle
and
G.
Vignale
,
Phys. Rev. B
65
,
113106
(
2002
).
11.
O. B.
Lutnæs
,
A. M.
Teale
,
T.
Helgaker
,
D. J.
Tozer
,
K.
Ruud
, and
J.
Gauss
,
J. Chem. Phys.
131
,
144104
(
2009
).
12.
A. M.
Teale
,
O. B.
Lutnæs
,
T.
Helgaker
,
D. J.
Tozer
, and
J.
Gauss
,
J. Chem. Phys.
138
,
024111
(
2013
).
13.
K.
Capelle
and
E. K. U.
Gross
,
Phys. Rev. Lett.
78
,
1872
(
1997
).
14.
M.
Taut
,
P.
Machon
, and
H.
Eschrig
,
Phys. Rev. A
80
,
022517
(
2009
).
15.
E. H.
Lieb
and
R.
Schrader
,
Phys. Rev. A
88
,
032516
(
2013
); e-print arXiv:1308.2664v1.
16.
E.
Cancès
,
J. Chem. Phys.
114
,
10616
(
2001
).
17.
E.
Cances
,
K. N.
Kudin
,
G. E.
Scuseria
, and
G.
Turinici
,
J. Chem. Phys.
118
,
5364
(
2003
).
18.
E.
Kraisler
,
G.
Makov
,
N.
Argaman
, and
I.
Kelson
,
Phys. Rev. A
80
,
032115
(
2009
).
19.
C. R.
Nygaard
and
J.
Olsen
,
J. Chem. Phys.
138
,
094109
(
2013
).
20.
E.
Tellgren
,
S.
Kvaal
, and
T.
Helgaker
, “
Fermion N-representability for prescribed density and paramagnetic current density
;” e-print arXiv:1310.1246v2.
21.
G.
Vignale
,
M.
Rasolt
, and
D. J. W.
Geldart
,
Phys. Rev. B
37
,
2502
(
1988
).
22.
A. M.
Lee
,
S. M.
Colwell
, and
N. C.
Handy
,
Chem. Phys. Lett.
229
,
225
(
1994
).
23.
A. M.
Lee
,
N. C.
Handy
, and
S. M.
Colwell
,
J. Chem. Phys.
103
,
10095
(
1995
).
24.
E.
Orestes
,
T.
Marcasso
, and
K.
Capelle
,
Phys. Rev. A
68
,
022105
(
2003
).
25.
J.
Tao
and
J. P.
Perdew
,
Phys. Rev. Lett.
95
,
196403
(
2005
).
26.
J.
Tao
and
G.
Vignale
,
Phys. Rev. B
74
,
193108
(
2006
).
27.
K.
Higuchi
and
M.
Higuchi
,
Phys. Rev. B
74
,
195122
(
2006
).
28.
M.
Higuchi
and
K.
Higuchi
,
Phys. Rev. B
75
,
195114
(
2007
).
29.
W.
Zhu
and
S. B.
Trickey
,
Phys. Rev. A
72
,
022501
(
2005
).
30.
A. D.
Becke
,
Can. J. Chem.
74
,
995
(
1996
).
31.
S.
Pittalis
,
S.
Kurth
,
S.
Sharma
, and
E. K. U.
Gross
,
J. Chem. Phys.
127
,
124103
(
2007
).
32.
J. F.
Dobson
,
J. Chem. Phys.
98
,
8870
(
1993
).
33.
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
34.
C. W.
Murray
,
N. C.
Handy
, and
G. J.
Laming
,
Mol. Phys.
78
,
997
(
1993
).
35.
R.
Lindh
,
P.-Å.
Malmqvist
, and
L.
Gagliardi
,
Theor. Chem. Acc.
106
,
178
(
2001
).
36.
V.
Lebedev
,
Comput. Math. Math. Phys.
15
,
44
(
1975
).
37.
V.
Lebedev
,
Comput. Math. Math. Phys.
16
,
10
(
1976
).
38.
V.
Lebedev
,
Sib. Math. J.
18
,
99
(
1977
).
39.
V.
Lebedev
and
A.
Skorokhodov
,
Russ. Acad. Sci. Dokl. Math.
45
,
587
(
1992
).
40.
V.
Lebedev
,
Russ. Acad. Sci. Dokl. Math.
50
,
283
(
1995
).
41.
V.
Lebedev
and
D.
Laikov
,
Dokl. Math.
59
,
477
(
1999
).
42.
K.
Aidas
,
C.
Angeli
,
K. L.
Bak
,
V.
Bakken
,
R.
Bast
,
L.
Boman
,
O.
Christiansen
,
R.
Cimiraglia
,
S.
Coriani
,
P.
Dahle
,
E. K.
Dalskov
,
U.
Ekström
,
T.
Enevoldsen
,
J. J.
Eriksen
,
P.
Ettenhuber
,
B.
Fernández
,
L.
Ferrighi
,
H.
Fliegl
,
L.
Frediani
,
K.
Hald
,
A.
Halkier
,
C.
Hättig
,
H.
Heiberg
,
T.
Helgaker
,
A. C.
Hennum
,
H.
Hettema
,
E.
Hjerteniæs
,
S.
Høst
,
I.-M.
Høyvik
,
M. F.
Iozzi
,
B.
Jansík
,
H. J. Å.
Jensen
,
D.
Jonsson
,
P.
Jørgensen
,
J.
Kauczor
,
S.
Kirpekar
,
T.
Kjærgaard
,
W.
Klopper
,
S.
Knecht
,
R.
Kobayashi
,
H.
Koch
,
J.
Kongsted
,
A.
Krapp
,
K.
Kristensen
,
A.
Ligabue
,
O. B.
Lutnæs
,
J. I.
Melo
,
K. V.
Mikkelsen
,
R. H.
Myhre
,
C.
Neiss
,
C. B.
Nielsen
,
P.
Norman
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Osted
,
M. J.
Packer
,
F.
Pawlowski
,
T. B.
Pedersen
,
P. F.
Provasi
,
S.
Reine
,
Z.
Rinkevicius
,
T. A.
Ruden
,
K.
Ruud
,
V.
Rybkin
,
P.
Sałek
,
C. C. M.
Samson
,
A.
Sánchez de Merás
,
T.
Saue
,
S. P. A.
Sauer
,
B.
Schimmelpfennig
,
K.
Sneskov
,
A. H.
Steindal
,
K. O.
Sylvester-Hvid
,
P. R.
Taylor
,
A. M.
Teale
,
E. I.
Tellgren
,
D. P.
Tew
,
A. J.
Thorvaldsen
,
L.
Thøgersen
,
O.
Vahtras
,
M. A.
Watson
,
D. J. D.
Wilson
,
M.
Ziolkowski
, and
H.
Åagren
, “
The Dalton quantum chemistry program system
,”
WIREs Comput. Mol. Sci.
(published online).
43.
DALTON, a molecular electronic structure program, Release Dalton 2013.0,
2013
, see http://daltonprogram.org.
44.
U.
Ekström
,
L.
Visscher
,
R.
Bast
,
A. J.
Thorvaldsen
, and
K.
Ruud
,
J. Chem. Theory Comput.
6
,
1971
(
2010
).
45.
W.
Zhu
and
S. B.
Trickey
,
J. Chem. Phys.
125
,
094317
(
2006
).
46.
G. I.
Pagola
,
M. C.
Caputo
,
M. B.
Ferraro
, and
P.
Lazzeretti
,
Phys. Rev. A
74
,
022509
(
2006
).
47.
G. I.
Pagola
,
S.
Pelloni
,
M. C.
Caputo
,
M. B.
Ferraro
, and
P.
Lazzeretti
,
Phys. Rev. A
72
,
033401
(
2005
).
48.
See supplementary material at http://dx.doi.org/10.1063/1.4861427 for the magnetizability, hyper-magnetizability, and NMR shielding constants calculated in this work.
49.
D.
Lai
,
Rev. Mod. Phys.
73
,
629
(
2001
).
50.
T.
Detmer
,
P.
Schmelcher
, and
L. S.
Cederbaum
,
Phys. Rev. A
57
,
1767
(
1998
).
51.
P.
Schmelcher
,
M. V.
Ivanov
, and
W.
Becken
,
Phys. Rev. A
59
,
3424
(
1999
).
52.
P.
Schmelcher
,
T.
Detmer
, and
L. S.
Cederbaum
,
Phys. Rev. A
61
,
043411
(
2000
).
53.
W.
Becken
and
P.
Schmelcher
,
Phys. Rev. A
65
,
033416
(
2002
).
54.
O.-A.
Al-Hujaj
and
P.
Schmelcher
,
Phys. Rev. A
70
,
023411
(
2004
).
55.
A.
Luhr
,
O.-A.
Al-Hujaj
, and
P.
Schmelcher
,
Phys. Rev. A
75
,
013403
(
2007
).
56.
A.
Kubo
,
J. Phys. Chem. A
111
,
5572
(
2007
).
57.
A.
Ishikawa
,
H.
Nakashima
, and
H.
Nakatsuji
,
Chem. Phys.
401
,
62
(
2012
).
58.
Z.
Medin
and
D.
Lai
,
Phys. Rev. A
74
,
062507
(
2006
).
59.
Z.
Medin
and
D.
Lai
,
Phys. Rev. A
74
,
062508
(
2006
).
60.
U.
Kappes
and
P.
Schmelcher
,
J. Chem. Phys.
100
,
2878
(
1994
).
61.
P.
Schmelcher
and
L. S.
Cederbaum
,
Phys. Rev. A
37
,
672
(
1988
).
62.
Y. P.
Kravchenko
and
M. A.
Lieberman
,
Int. J. Quantum Chem.
64
,
513
(
1997
).
63.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
64.
T. W.
Keal
and
D. J.
Tozer
,
J. Chem. Phys.
121
,
5654
(
2004
).

Supplementary Material

You do not currently have access to this content.