When a flowing fluid is channeled by chemical or physical precipitation, then tubular structures form. These patterns are common in nature, however, there have been few quantitative studies of their formation. Here, we report measurements of the radius, length, and internal pressure, as functions of time and flow rate, for precipitation tubes growing in chemical gardens. Using these measurements we develop models for how single tubes grow and also for how multiple tubes interact with each other. In particular, when multiple tubes grow from the same source they compete for resources; short/wide tubes have less resistance to flow, and so consume more of the resources, “killing” the growth of long/narrow tubes. These tube interactions are described by an equation similar to an unstable logistic equation.

1.
C.
Hill
and
P.
Forti
,
Cave Minerals of the World
(
National Speleological Society
,
Huntsville
,
1997
).
2.
J. B.
Corliss
 et al., “
Submarine thermal springs on the Galápagos rift
,”
Science
203
,
1073
(
1979
).
3.
J. H. E.
Cartwright
,
B.
Escribano
,
G. L.
Gonzalez
,
C. I.
Sainz-Diaz
, and
I.
Tuval
, “
Brinicles as a case of inverse chemical gardens
,”
Langmuir
29
,
7655
(
2013
).
4.
R. W.
Griffiths
, “
The dynamics of lava flows
,”
Annu. Rev. Fluid. Mech.
32
,
477
(
2000
).
5.
G.
Butler
and
H. C. K.
Ison
, “
An unusual form of corrosion product
,”
Nature (London)
182
,
1229
(
1958
).
6.
D. D.
Double
and
A.
Hellawell
, “
The hydration of Portland Cement
,”
Nature (London)
261
,
486
(
1976
).
7.
J. R.
Glauber
,
Furni Novi Philosophici
(
Amsterdam
,
1646
).
8.
T. H.
Hazlehurst
, “
Structural precipitates: The silicate garden type
,”
J. Chem. Educ.
18
,
286
(
1941
).
9.
P. R. D.
Coatman
,
N. L.
Thomas
, and
D. D.
Double
, “
Studies of the growth of “silicate gardens” and related phenomena
,”
J. Mater. Sci.
15
,
2017
(
1980
).
10.
J. H. E.
Cartwright
,
J. M.
Garcia-Ruiz
,
M. L.
Novella
, and
F.
Otalora
, “
Formation of chemical gardens
,”
J. Coll. Inter. Sci.
256
,
351
(
2002
).
11.
J.
Maselko
,
A.
Geldebhuys
,
J.
Miller
, and
D.
Atwood
, “
Self-construction of complex forms in a simple chemical system
,”
Chem. Phys. Lett.
373
,
563
(
2003
).
12.
S.
Thouvenel-Romans
and
O.
Steinbock
,
Oscillatory growth of silica tubes in chemical gardens
,”
J. Am. Chem. Soc.
125
,
4338
(
2003
).
13.
S.
Thouvenel-Romans
,
W.
van Saarloos
, and
O.
Steinbock
, “
Silica tubes in chemical gardens: Radius selection and its hydrodynamic origin
,”
Europhys. Lett.
67
(
1
),
42
(
2004
).
14.
D. A.
Stone
,
B.
Lewellyn
,
J. C.
Baygents
, and
R. E.
Goldstein
, “
Precipitative growth templated by a fluid jet
,”
Langmuir
21
,
10916
10919
(
2005
).
15.
S.
Thouvenel-Romans
,
J. J.
Pagano
, and
O.
Steinbock
, “
Bubble guidance of tubular growth in reaction–precipitation systems
,”
Phys. Chem. Chem. Phys.
7
,
2610
(
2005
).
16.
J. J.
Pagano
,
T.
Bansagi
, Jr.
, and
O.
Steinbock
, “
Tube formation in reverse in silica gardens
,”
J. Phys. Chem. C
111
,
9324
(
2007
).
17.
J.
Pantaleone
 et al., “
Oscillations of a chemical garden
,”
Phys. Rev. E
77
,
046207
(
2008
).
18.
J.
Pantaleone
 et al., “
Pressure oscillations in a chemical garden
,”
Phys. Rev. E
79
,
056221
(
2009
).
19.
R.
Clément
and
S.
Douady
, “
Ocean-ridge-like growth in silica tubes
,”
Europhys. Lett.
89
,
44004
(
2010
).
20.
V.
Kaminker
,
J.
Maselko
, and
J.
Pantaleone
, “
Chemical precipitation structures formed by drops impacting on a deep pool
,”
J. Chem. Phys.
137
,
184701
(
2012
).
21.
S.
Martin
, “
Ice stalactites: Comparison of a laminar flow theory with experiment
,”
J. Fluid Mech.
63
,
51
(
1974
).
22.
Pierre-François
Verhulst
, “
Notice sur la loi que la population poursuit dans son accroissement
,”
Correspond. Math. Phys.
10
,
113
121
(
1838
).
23.
D. J.
Tritton
,
Physical Fluid Dynamics
(
Oxford Scientific Publications
,
1988
).
24.
D. R.
Merritt
and
F.
Weinhaus
, “
The pressure curve for a rubber balloon
,”
Am. J. Phys.
46
,
976
(
1978
).
25.
I.
Muller
and
P.
Strehlow
, “
Rubber and rubber balloons, paradigms in thermodynamics
,”
Lecture Notes in Physics
Vol.
637
(
Springer-Verlag
,
Berlin
,
2004
).
26.
M. B.
Short
,
J. C.
Baygents
, and
R. E.
Goldstein
, “
A free-boundary theory for the shape of the ideal dripping icicle
,”
Phys. Fluids
18
,
083101
(
2006
).
27.
B.
Jamtveit
and
Ø.
Hammer
, “
Sculpting of rocks by reactive fluids
,”
Geochem. Perspect.
1
,
341
(
2012
).
28.
J. A.
Whitehead
and
K. R.
Helfrich
, “
Instability of flow with temperature-dependent viscosity: A model of magma dynamics
,”
J. Geophys. Res.
96
,
4145
, doi: (
1991
).
29.
J. J.
Wylie
 et al., “
Flow localization in fissure eruptions
,”
Bull. Volcanol.
60
,
432
(
1999
).
You do not currently have access to this content.