NMR spectroscopy (1H, 13C, 15N) shows that carbon disulfide reacts spontaneously with 1-butyl-1-methylpyrrolidinium acetate ([BmPyrro][Ac]) in the liquid phase. It is found that the acetate anions play an important role in conditioning chemical reactions with CS2 leading, via coupled complex reactions, to the degradation of this molecule to form thioacetate anion (CH3COS), CO2, OCS, and trithiocarbonate (CS32−). In marked contrast, the cation does not lead to the formation of any adducts allowing to conclude that, at most, its role consists in assisting indirectly these reactions. The choice of the [BmPyrro]+ cation in the present study allows disentangling the role of the anion and the cation in the reactions. As a consequence, the ensemble of results already reported on CS2-[Bmim][Ac] (1), OCS-[Bmim][Ac] (2), and CO2-[Bmim][Ac] (3) systems can be consistently rationalized. It is argued that in system (1) both anion and cation play a role. The CS2 reacts with the acetate anion leading to the formation of CH3COS, CO2, and OCS. After these reactions have proceeded the nascent CO2 and OCS interact with the cation to form imidazolium-carboxylate ([Bmim] CO2) and imidazolium-thiocarboxylate ([Bmim] COS). The same scenario also applies to system (2). In contrast, in the CO2-[Bmim] [Ac] system a concerted cooperative process between the cation, the anion, and the CO2 molecule takes place. A carbene issued from the cation reacts to form the [Bmim] CO2, whereas the proton released by the ring interacts with the anion to produce acetic acid. In all these systems, the formation of adduct resulting from the reaction between the solute molecule and the carbene species originating from the cation is expected. However, this species was only observed in systems (2) and (3). The absence of such an adduct in system (1) has been theoretically investigated using DFT calculations. The values of the energetic barrier of the reactions show that the formation of [Bmim] CS2 is unfavoured and that the anion offers a competitive reactive channel via an oxygen-sulphur exchange mechanism with the solute in systems (1) and (2).

1.
Ionic Liquids as Green Solvents. Progress and Prospects
, edited by
R. D.
Rogers
and
K. R.
Seddon
(
American Chemical Society
,
Washington
,
2003
).
2.
C.
Cadena
,
J. L.
Anthony
,
J. K.
Shah
,
T. I.
Morrow
,
J. F.
Brennecke
, and
E. J.
Maginn
,
J. Am. Chem. Soc.
126
,
5300
(
2004
).
3.
E. W.
Castner
,
J. F.
Wishart
, and
H.
Shirota
,
Acc. Chem. Res.
40
,
1217
(
2007
).
4.
L.
Delaude
,
Eur. J. Inorg. Chem.
1681
(
2009
) and references therein.
5.
E. J.
Maginn
,
J. Phys.: Condens. Matter
21
,
373101
(
2009
).
6.
E. W.
Castner
and
J. F.
Wishart
,
J. Chem. Phys.
132
,
120901
(
2010
).
7.
J. F.
Brennecke
and
B. E.
Gurkan
,
J. Phys. Chem. Lett.
1
,
3459
(
2010
).
8.
F.
Jutz
,
J.-M.
Andanson
, and
A.
Baiker
,
Chem. Rev.
111
,
322
(
2011
).
9.
J.
Zhang
,
J.
Sun
,
X.
Zhang
,
Y.
Zhao
, and
S.
Zhang
,
Greenhouse Gas Sci. Technol.
1
,
142
(
2011
).
10.
S.
Stevanovic
,
A.
Podgorsek
,
L.
Moura
,
C. C.
Santini
,
A. A. H.
Padua
, and
M. F. C.
Gomes
,
Int. J. Greenhouse Gas Control
17
,
78
(
2013
).
11.
Y.
Zhang
,
Z.
Wu
,
S.
Chen
,
P.
Yu
, and
Y.
Luo
,
Ind. Eng. Chem. Res.
52
,
6069
(
2013
).
12.
M. B.
Shiflett
,
D. J.
Kasprzak
,
C. P.
Junk
, and
A.
Yokozeki
,
J. Chem. Thermodyn.
40
,
25
(
2008
).
13.
P. J.
Carvalho
,
V. H.
Alvarez
,
B.
Schröder
,
A. M.
Gil
,
I. M.
Marrucho
,
M.
Aznar
,
L. M. N. B. F.
Santos
, and
J. A. P.
Coutinho
,
J. Phys. Chem. B
113
,
6803
(
2009
).
14.
E. J.
Maginn
, “
Design and evaluation of ionic liquids as novel CO2 absorbents
,” Quaterly Technical Reports to DOE, 2004-2006.
15.
H.
Rodriguez
,
G.
Gurau
,
J. D.
Holbrey
, and
R. D.
Rogers
,
Chem. Commun.
47
,
3222
(
2011
).
16.
G.
Gurau
,
H.
Rodriguez
,
S. P.
Kelley
,
P.
Janiczek
,
R. S.
Kalb
, and
R. D.
Rogers
,
Angew. Chem., Int. Ed.
50
,
12024
(
2011
).
17.
J. D.
Holbrey
,
W. M.
Reichert
,
I.
Tkatchenko
,
E.
Bouajila
,
O.
Walter
,
I.
Tommasi
, and
R. D.
Rogers
,
Chem. Commun.
28
(
2003
).
18.
Z.
Kelemen
,
O.
Hollóczki
,
J.
Nagy
, and
L.
Nyulászi
,
Org. Biomol.Chem.
9
,
5362
(
2011
).
19.
O.
Holloczki
,
D.
Gerhard
,
K.
Massone
,
L.
Szarvas
,
B.
Nemeth
,
T.
Veszpremi
, and
L.
Nyulaszi
,
New J. Chem.
34
,
3004
(
2010
).
20.
M.
Besnard
,
M. I.
Cabaço
,
F.
Vaca-Chávez
,
N.
Pinaud
,
P. J.
Sebastião
,
J. A. P.
Coutinho
, and
Y.
Danten
,
Chem. Commun.
48
(
9
),
1245
(
2012
).
21.
M. I.
Cabaço
,
M.
Besnard
,
Y.
Danten
, and
J. A. P.
Coutinho
,
J. Phys. Chem. A
116
,
1605
(
2012
).
22.
M.
Besnard
,
M. I.
Cabaço
,
F. V.
Chavez
,
N.
Pinaud
,
P. J.
Sebastião
,
J. A. P.
Coutinho
,
J.
Mascetti
, and
Y.
Danten
,
J. Phys. Chem. A
116
,
4890
(
2012
).
23.
S.
Stevanovic
,
A.
Podgorsek
,
A. A. H.
Padua
, and
M. F. C.
Gomes
,
J. Phys. Chem. B
116
,
14416
(
2012
).
24.
O.
Hollóczki
,
D. S.
Firaha
,
J.
Friedrich
,
M.
Brehm
,
R.
Cybik
,
M.
Wild
,
A.
Stark
, and
B.
Kirchner
,
J. Phys. Chem. B
117
,
5898
(
2013
).
25.
O.
Hollóczki
,
Z.
Kelemen
,
L.
Konczol
,
D.
Szieberth
,
L.
Nyulaszi
,
A.
Stark
, and
B.
Kirchner
,
ChemPhysChem
14
,
315
(
2013
).
26.
M.
Thomas
,
M.
Brehem
,
O.
Hollóczki
, and
B.
Kirchner
,
Chem. Eur. J.
20
,
1622
(
2014
).
27.
M. I.
Cabaço
,
M.
Besnard
,
F.
Vaca-Chávez
,
N.
Pinaud
,
P. J.
Sebastião
,
J. A. P.
Coutinho
,
J.
Mascetti
, and
Y.
Danten
,
Chem. Commun.
49
,
11083
(
2013
).
28.
N.
Kuhn
,
H.
Bohnen
, and
G.
Henkel
,
Z. Naturforsch.
49b
,
1473
(
1994
).
29.
J.
Nakayama
,
T.
Kitahara
,
Y.
Sujihara
,
A.
Sakamoto
, and
A.
Ishii
,
J. Am. Chem. Soc.
122
,
9120
(
2000
).
30.
L.
Delaude
,
A.
Demonceau
, and
J.
Wouters
,
Eur. J. Inorg. Chem.
1882
(
2009
).
31.
U.
Siemeling
,
H.
Memczak
,
C.
Bruhn
,
F.
Vogel
,
F.
Trager
,
J. E.
Baio
, and
Y.
Weidner
,
Dalton Trans.
41
,
2986
(
2012
).
32.
A. B. Castillo
Favier
,
C.
Godard
,
S.
Castilllon
,
C.
Claver
,
M.
Gomez
, and
E.
Teuma
,
Chem. Commun.
47
,
7869
(
2011
).
33.
C.
Madhu
,
H. P.
Hemantha
,
T. M.
Vishwanatha
, and
V. V.
Sureshhbabu
,
Synth. Commun.
43
,
228
(
2013
).
34.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 03, Gaussian, Inc., Wallingford, CT,
2004
.
35.
Y.
Zhao
and
D. G.
Trulhar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
36.
P. Y.
Ayala
and
H. B.
Schlegel
,
J. Chem. Phys.
107
,
375
(
1997
);
C.
Peng
and
H. B.
Schlegel
,
Israel J. Chem.
33
,
449
(
1993
).
37.
C.
Peng
,
P. Y.
Ayala
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Comput. Chem.
17
,
49
(
1996
).
38.
H. P.
Hratchian
and
H. B.
Schlegel
,
J. Chem. Theory Comput.
1
,
61
(
2005
).
39.
See supplementary material at http://dx.doi.org/10.1063/1.4884820 for NMR spectra of CS2-[BmPyrro][Ac] solutions.
40.
G. R.
Fulmer
,
A. J. M.
Miller
,
N. H.
Sherden
,
H. E.
Gottlieb
,
A.
Nudelman
,
B. M.
Stoltz
,
J. E.
Bercaw
, and
K. I.
Goldberg
,
Organometallics
29
,
2176
(
2010
).
41.
B.
Tamami
and
A. R.
Kiasat
,
IRANIAN Polymer J
8
,
17
(
1999
).
42.
J. P.
Fackler
and
D.
Coucouvanis
,
J. Am. Chem. Soc.
88
,
3913
(
1966
).
43.
Z. Y.
Sheng
, M.Sc. thesis,
Chongqing University
, Chongqing, China,
2008
.
44.
L. L.
Borer
,
J.
Kong
, and
E.
Sinn
,
Inorg. Chim. Acta
122
,
145
(
1986
).
45.
L. L.
Borer
,
J. V.
Kong
,
P. A.
Keihl
, and
D. M.
Forkey
,
Inorg. Chim. Acta
129
,
223
(
1987
).
46.
C.
Furlani
and
M. L.
Luciani
,
Inorg. Chem.
7
,
1586
(
1968
).
47.
Y.
Danten
,
M. I.
Cabaço
,
J. A. P.
Coutinho
,
N.
Pinaud
,
F. V.
Chávez
,
P. J.
Sebastião
, and
M.
Besnard
, ‘Reactive mechanisms in solutions of CS2 and OCS in acetate based ionic liquids investigated by DFT calculations,” (unpublished).

Supplementary Material

You do not currently have access to this content.