Two isotopic chemical reactions, Ne* + NH3, and Ne* + ND3, have been studied at low collision energies by means of a merged beams technique. Partial cross sections have been recorded for the two reactive channels, namely, Ne* + NH3 → Ne +

${\rm NH}_3^+$
NH 3+ + e, and Ne* + NH3 → Ne +
${\rm NH}_2^+$
NH 2+
+ H + e, by detecting the
${\rm NH}_3^+$
NH 3+
and
${\rm NH}_2^+$
NH 2+
product ions, respectively. The cross sections for both reactions were found to increase with decreasing collision energy, Ecoll, in the range 8 μeV < Ecoll < 20 meV. The measured rate constant exhibits a curvature in a log(k)-log(Ecoll) plot from which it is concluded that the Langevin capture model does not properly describe the Ne* + NH3 reaction in the entire range of collision energies covered here. Calculations based on multichannel quantum defect theory were performed to reproduce and interpret the experimental results. Good agreement was obtained by including long range van der Waals interactions combined with a 6-12 Lennard-Jones potential. The branching ratio between the two reactive channels,
$\Gamma = \frac{[NH_2^+]}{[NH_2^+]+[NH_3^+]}$
Γ=[NH2+][NH2+]+[NH3+]
, is relatively constant, Γ ≈ 0.3, in the entire collision energy range studied here. Possible reasons for this observation are discussed and rationalized in terms of relative time scales of the reactant approach and the molecular rotation. Isotopic differences between the Ne* + NH3 and Ne* + ND3 reactions are small, as suggested by nearly equal branching ratios and cross sections for the two reactions.

1.
R.
Krems
,
B.
Friedrich
, and
W. C.
Stwalley
,
Cold Molecules: Theory, Experiment, Applications
(
CRC Press
,
2010
).
2.
S. Y. T.
van de Meerakker
,
H. L.
Bethlem
,
N.
Vanhaecke
, and
G.
Meijer
,
Chem. Rev.
112
,
4828
(
2012
).
3.
G.
Quèmèner
and
P. S.
Julienne
,
Chem. Rev.
112
,
4949
(
2012
).
4.
A. B.
Henson
,
S.
Gersten
,
Y.
Shagam
,
J.
Narevicius
, and
E.
Narevicius
,
Science
338
,
234
(
2012
).
5.
S.
Chefdeville
,
Y.
Kalugina
,
S. Y. T.
van de Meerakker
,
C.
Naulin
,
F.
Lique
, and
M.
Costes
,
Science
341
,
1094
(
2013
).
6.
S.
Chefdeville
,
T.
Stoecklin
,
A.
Bergeat
,
K. M.
Hickson
,
C.
Naulin
, and
M.
Costes
,
Phys. Rev. Lett.
109
,
23201
(
2012
).
7.
R. J.
Shannon
,
M. A.
Blitz
,
A.
Goddard
, and
D. E.
Heard
,
Nat. Chem.
5
,
745
(
2013
).
9.
A.
Niehaus
,
Adv. Chem. Phys.
45
,
399
(
1981
).
10.
I. R.
Sims
and
I. W. M.
Smith
,
Annu. Rev. Phys. Chem.
46
,
109
(
1995
).
11.
S.
Willitsch
,
Int. Rev. Phys. Chem.
31
,
175
(
2012
).
12.
D.
Rösch
,
S.
Willitsch
,
Y.-P.
Chang
, and
J.
Küpper
,
J. Chem. Phys.
140
,
124202
(
2014
).
13.
Y.-P.
Chang
,
K.
Długołęcki
,
J.
Küpper
,
D.
Rösch
,
D.
Wild
, and
S.
Willitsch
,
Science
342
,
98
(
2013
).
14.
L. P.
Parazzoli
,
N.
Fitch
,
J.
Hutson
, and
H.
Lewandowski
,
Phys. Rev. Lett.
106
,
193201
(
2011
).
15.
B. C.
Sawyer
,
B. K.
Stuhl
,
M.
Yeo
,
T. V.
Tscherbul
,
M. T.
Hummon
,
Y.
Xia
,
J.
Kłos
,
D.
Patterson
,
J. M.
Doyle
, and
J.
Ye
,
Phys. Chem. Chem. Phys.
13
,
19059
(
2011
).
16.
S.
Ospelkaus
,
K. K.
Ni
,
D.
Wang
,
M. H. G. d.
Miranda
,
B.
Neyenhuis
,
G.
Quemener
,
P. S.
Julienne
,
J. L.
Bohn
,
D. S.
Jin
, and
J.
Ye
,
Science
327
,
853
(
2010
).
17.
M. H. G.
de Miranda
,
A.
Chotia
,
B.
Neyenhuis
,
D.
Wang
,
G.
Quéméner
,
S.
Ospelkaus
,
J. L.
Bohn
,
J.
Ye
, and
D. S.
Jin
,
Nat. Phys.
7
,
502
(
2011
).
18.
Z.
Idziaszek
and
P. S.
Julienne
,
Phys. Rev. Lett.
104
,
113202
(
2010
).
19.
T. T.
Wang
,
M.-S.
Heo
,
T. M.
Rvachov
,
D. A.
Cotta
, and
W.
Ketterle
,
Phys. Rev. Lett.
110
,
173203
(
2013
).
20.
R. A.
Phaneuf
,
C. C.
Havener
,
G. H.
Dunn
, and
A.
Müller
,
Rep. Prog. Phys.
62
,
1143
(
1999
).
21.
B.
Bertsche
,
J.
Jankunas
, and
A.
Osterwalder
,
Chimia
68
,
256
(
2014
).
22.
J.
Jankunas
,
B.
Bertsche
, and
A.
Osterwalder
,
J. Phys. Chem. A
118
,
3875
(
2014
).
23.
Q.
Wei
,
I.
Lyuksyutov
, and
D.
Herschbach
,
J. Chem. Phys.
137
,
054202
(
2012
).
24.
P. E.
Siska
,
Rev. Mod. Phys.
65
,
337
(
1993
).
25.
E.
Lavert-Ofir
,
Y.
Shagam
,
A. B.
Henson
,
S.
Gersten
,
J.
Kłos
,
P. S.
Żuchowski
,
J.
Narevicius
, and
E.
Narevicius
,
Nat. Chem.
6
,
332
(
2014
).
26.
H. M.
Bevsek
and
P. E.
Siska
,
J. Chem. Phys.
102
,
1934
(
1995
).
27.
M.
Ben Arfa
,
B.
Lescop
,
M.
Cherid
,
B.
Brunetti
,
P.
Candori
,
D.
Malfatti
,
S.
Falcinelli
, and
F.
Vecchiocattivi
,
Chem. Phys. Lett.
308
,
71
(
1999
).
28.
R. D.
Levine
,
Molecular Reaction Dynamics
(
Cambridge University Press
,
Cambridge
,
2009
).
29.
D.
Townsend
,
S. A.
Lahankar
,
S. K.
Lee
,
S. D.
Chambreau
,
A. G.
Suits
,
X.
Zhang
,
J.
Rheinecker
,
L. B.
Harding
, and
J. M.
Bowman
,
Science
306
,
1158
(
2004
).
30.
J. M.
Bowman
and
A. G.
Suits
,
Phys. Today
64
(
11
),
33
(
2011
).
31.
J. M.
Bowman
, “
Roaming
,”
Mol. Phys.
(published online
2014
).
32.
U.
Even
,
J.
Jortner
,
D.
Noy
,
N.
Lavie
, and
C.
Cossart-Magos
,
J. Chem. Phys.
112
,
8068
(
2000
).
33.
B.
Bertsche
and
A.
Osterwalder
,
Phys. Chem. Chem. Phys.
13
,
18954
(
2011
).
34.
B.
Bertsche
and
A.
Osterwalder
,
Phys. Rev. A
82
,
033418
(
2010
).
35.
J.
Allen
,
M. N. R.
Ashfold
,
R.
Stickland
, and
C. M.
Western
,
Mol. Phys.
74
,
49
(
1991
).
36.
GOPHER, a program for simulating rotational structure, C. M. Western, University of Bristol, 2013, see http://pgopher.chm.bris.ac.uk.
37.
W. C.
Wiley
and
I. H.
McLaren
,
Rev. Sci. Instrum.
26
,
1150
(
1955
).
38.
Y.
Shagam
and
E.
Narevicius
,
J. Phys. Chem. C
117
,
22454
(
2013
).
39.
P. S.
Żuchowski
and
J. M.
Hutson
,
Phys. Rev. A
78
,
022701
(
2008
).
40.
M.
Kirste
,
X.
Wang
,
H. C.
Schewe
,
G.
Meijer
,
K.
Liu
,
A.
van der Avoird
,
L. M. C.
Janssen
,
K. B.
Gubbels
,
G. C.
Groenenboom
, and
S. Y. T.
van de Meerakker
,
Science
338
,
1060
(
2012
).
41.
M.
Hapka
,
P. S.
Żuchowski
,
M. M.
Szczęśniak
, and
G.
Chałasiński
,
J. Chem. Phys.
137
,
164104
(
2012
).
42.
M.
Hapka
,
G.
Chałasiński
,
J.
Kłos
, and
P. S.
Żuchowski
,
J. Chem. Phys.
139
,
014307
(
2013
).
43.
W.
Benedict
and
E. K.
Plyler
,
Can. J. Phys.
35
,
1235
(
1957
).
44.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
, et al, Molpro, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
45.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
46.
R. A.
Kendall
,
T. H.
Dunning
 Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
47.
R.
Gregor
and
P.
Siska
,
J. Chem. Phys.
74
,
1078
(
1981
).
48.
P. S.
Żuchowski
and
J. M.
Hutson
,
Phys. Rev. A
79
,
062708
(
2009
).
49.
C.
Schmuttenmaer
,
R.
Cohen
,
J.
Loeser
, and
R.
Saykally
,
J. Chem. Phys.
95
,
9
(
1991
).
50.
F. H.
Mies
,
J. Chem. Phys.
80
,
2514
(
1984
).
51.
F. H.
Mies
and
P. S.
Julienne
,
J. Chem. Phys.
80
,
2526
(
1984
).
52.
P. S.
Julienne
and
F. H.
Mies
,
J. Opt. Soc. Am. B
6
,
2257
(
1989
).
53.
F. H.
Mies
and
M.
Raoult
,
Phys. Rev. A
62
,
012708
(
2000
).
55.
Z.
Idziaszek
,
A.
Simoni
,
T.
Calarco
, and
P. S.
Julienne
,
New J. Phys.
13
,
083005
(
2011
).
56.
P.
Langevin
,
Ann. Chim. Phys.
5
,
245
(
1905
).
57.
K.
Jachymski
,
M.
Krych
,
P. S.
Julienne
, and
Z.
Idziaszek
,
Phys. Rev. Lett.
110
,
213202
(
2013
).
58.
A.
Dalgarno
,
Phil. Trans. Roy. Soc. London Ser. A
250
,
426
(
1958
).
59.
R.
Côté
and
A.
Dalgarno
,
Phys. Rev. A
62
,
012709
(
2000
).
60.
B. G.
Brunetti
,
P.
Candori
,
S.
Falcinelli
,
F.
Pirani
, and
F.
Vecchiocattivi
,
J. Chem. Phys.
139
,
164305
(
2013
).
61.
N.
Balucani
,
A.
Bartocci
,
B.
Brunetti
,
P.
Candori
,
S.
Falcinelli
,
F.
Palazzetti
,
F.
Pirani
, and
F.
Vecchiocattivi
,
Chem. Phys. Lett.
546
,
34
(
2012
).
62.
F.
Biondini
,
B. G.
Brunetti
,
P.
Candori
,
F.
De Angelis
,
S.
Falcinelli
,
F.
Tarantelli
,
M.
Moix Teixidor
,
F.
Pirani
, and
F.
Vecchiocattivi
,
J. Chem. Phys.
122
,
164307
(
2005
).
You do not currently have access to this content.