The long-time self-diffusion coefficient, DL, of charged spherical colloidal particles in parallel planar layers is studied by means of Brownian dynamics computer simulations and mode-coupling theory. All particles (regardless which layer they are located on) interact with each other via the screened Coulomb potential and there is no particle transfer between layers. As a result of the geometrical constraint on particle positions, the simulation results show that DL is strongly controlled by the separation between layers. On the basis of the so-called contraction of the description formalism [C. Contreras-Aburto, J. M. Méndez-Alcaraz, and R. Castañeda-Priego, J. Chem. Phys.132, 174111 (2010)], the effective potential between particles in a layer (the so-called observed layer) is obtained from integrating out the degrees of freedom of particles in the remaining layers. We have shown in a previous work that the effective potential performs well in describing the static structure of the observed layer (loc. cit.). In this work, we find that the DL values determined from the simulations of the observed layer, where the particles interact via the effective potential, do not agree with the exact values of DL. Our findings confirm that even when an effective potential can perform well in describing the static properties, there is no guarantee that it will correctly describe the dynamic properties of colloidal systems.

1.
D. F.
Evans
and
H.
Wennerström
,
The Colloidal Domain, where Physics, Chemistry, Biology and Technology meet
(
Wiley-VCH
,
1999
).
2.
N. E.
Valadez-Pérez
,
Y.
Liu
,
A. P. R.
Eberle
,
N. J.
Wagner
, and
R.
Castañeda-Priego
,
Phys. Rev. E
88
,
060302
R
(
2013
).
3.
G.
Nägele
,
The Physics of Colloidal Soft Matter
(
Institute of Fundamental Technological Research
,
Warsaw
,
2004
).
4.
C.
Contreras-Aburto
,
J. M.
Méndez-Alcaraz
, and
R.
Castañeda-Priego
,
J. Chem. Phys.
132
,
174111
(
2010
).
5.
W.
Pfeiffer
 et al.,
Europhys. Lett.
8
,
201
(
1989
).
6.
D.
Qu
 et al.,
Colloids Surf. A
303
,
97
(
2007
).
7.
G.
Espinosa
 et al.,
Proc. Natl. Acad. Sci. U.S.A.
108
,
6008
(
2011
).
8.
Y.
Gambin
 et al.,
Proc. Natl. Acad. Sci. U.S.A.
103
,
2098
(
2006
).
9.
M. C.
Jenkins
and
S. U.
Egelhaaf
,
J. Phys.: Condens. Matter
20
,
404220
(
2008
).
10.
Strictly speaking, the model of parallel planar layers consists of a set of two-dimensional systems, and there is no three-dimensional movement of the particles. However, the interaction between particles is three-dimensional. It is in this sense that we say that the set of layers behaves as a three-dimensional system, in allusion to the remnant on the structural and dynamical properties from the three-dimensional nature of the pair-potential.
11.
J. M.
Méndez-Alcaraz
and
R.
Klein
,
Phys. Rev. E
61
,
4095
(
2000
).
12.
R.
Castañeda-Priego
,
A.
Rodríguez-López
, and
J. M.
Méndez-Alcaraz
,
Phys. Rev. E
73
,
051404
(
2006
).
13.
C.
Contreras Aburto
and
G.
Nägele
,
J. Chem. Phys.
139
,
134110
(
2013
).
14.
E. J. W.
Verwey
and
J. T. G.
Overbeek
,
Theory of the Stability of Lyophobic Colloids
(
Elsevier
,
Amsterdam
,
1948
).
15.
M.
Medina-Noyola
and
D. A.
McQuarrie
,
J. Chem. Phys.
73
,
6279
(
1980
).
16.
L. F.
Rojas-Ochoa
,
R.
Castañeda-Priego
,
V.
Lobaskin
,
A.
Stradner
,
F.
Scheffold
, and
P.
Schurtenberger
,
Phys. Rev. Lett.
100
,
178304
(
2008
).
17.
R.
Castañeda-Priego
,
L. F.
Rojas-Ochoa
,
V.
Lobaskin
, and
J. C.
Mixteco-Sánchez
,
Phys. Rev. E
74
,
051408
(
2006
).
18.
F. de J.
Guevara-Rodríguez
and
M.
Medina-Noyola
,
Phys. Rev. E
68
,
011405
(
2003
).
19.
G.
Nägele
and
J. K. G.
Dhont
,
J. Chem. Phys.
108
,
9566
(
1998
).
20.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Academic Press
,
1990
).
21.
G.
Nägele
,
J.
Bergenholtz
, and
J. K. G.
Dhont
,
J. Chem. Phys.
110
,
7037
(
1999
).
22.
A. J.
Banchio
,
J.
Bergenholtz
, and
G.
Nägele
,
Phys. Rev. Lett.
82
,
1792
(
1999
).
23.
M. G.
McPhie
and
G.
Nägele
,
J. Chem. Phys.
127
,
034906
(
2007
).
24.
G.
Nägele
,
M.
Heinen
,
A. J.
Banchio
, and
C.
Contreras Aburto
,
Eur. Phys. J. Spec. Top.
222
,
2855
(
2013
).
25.
W.
Schaertl
and
H.
Sillescu
,
J. Stat. Phys.
77
,
1007
(
1994
).
26.
R. B.
Jones
and
G. S.
Burfield
,
Physica A
111
,
562
(
1982
).
28.
H.
Löwen
,
T.
Palberg
, and
R.
Simon
,
Phys. Rev. Lett.
70
,
1557
(
1993
).
29.
30.
P. J.
Lu
 et al.,
Nature (London)
453
,
499
(
2008
).
31.
S.
Herrera-Velarde
 et al.,
J. Nanofluids
1
,
44
(
2012
).
You do not currently have access to this content.