Dynamics of excitonic polaron formation in molecular systems coupled to an overdamped bath are investigated using the Dirac-Frenkel variational principle and Davydov D1 Ansatz. Using a two-site model system we show that a few qualitatively distinct relaxation regimes of an optically created exciton are possible, depending on the timescale of bath fluctuations. A slow bath always leads to adiabatic polaron formation. Non-adiabatic exciton self-trapping occurs when the system is strongly coupled to a fast bath. Weak coupling to such bath does not perturb the excitonic picture. The complex system-bath dynamics can then be mapped to an effective model where the resonant coupling between sites is quenched during relaxation. The timescale of the polaron formation can be defined by the timescale of resonant coupling quenching, and is found to directly correlate with the bath relaxation time.

1.
A.
Davydov
,
A Theory of Molecular Excitons
(
McGraw-Hill
,
New York
,
1962
).
2.
H.
van Amerongen
,
L.
Valkunas
, and
R.
van Grondelle
,
Photosynthetic Excitons
(
World Scientific
,
Singapore
,
2000
).
3.
L.
Valkunas
,
D.
Abramavicius
, and
T.
Mančal
,
Molecular Excitation Dynamics and Relaxation
(
Wiley-VCH
,
Weinheim
,
2013
).
4.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley-VCH
,
2004
).
5.
E.
Silinš
and
V.
Čápek
,
Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena
(
American Institute of Physics
,
1994
).
6.
P. M.
Chaikin
,
A. F.
Garito
, and
A. J.
Heeger
,
Phys. Rev. B
5
,
4966
(
1972
).
7.
S.
Jursenas
,
A.
Gruodis
,
G.
Kodis
,
M.
Chachisvilis
,
V.
Gulbinas
,
E. A.
Silinsh
, and
L.
Valkunas
,
J. Phys. Chem. B
102
,
1086
(
1998
).
8.
A.
Song
and
R.
Williams
,
Self-Trapped Excitons
,
Springer Series in Solid-State Sciences
Vol.
105
(
Springer
,
1993
).
9.
A.
Matsui
,
Pure Appl. Chem.
67
,
429
(
1995
).
10.
L.
van Dijk
,
F. C.
Spano
, and
P. A.
Bobbert
,
Chem. Phys. Lett.
529
,
69
(
2012
).
11.
A.
Freiberg
,
M.
Rätsep
,
K.
Timpmann
, and
G.
Trinkunas
,
Chem. Phys.
357
,
102
(
2009
).
12.
M.
Pajusalu
,
M.
Rätsep
,
G.
Trinkunas
, and
A.
Freiberg
,
ChemPhysChem
12
,
634
(
2011
).
13.
M. K.
Sener
,
S.
Park
,
D.
Lu
,
A.
Damjanović
,
T.
Ritz
,
P.
Fromme
, and
K.
Schulten
,
J. Chem. Phys.
120
,
11183
(
2004
).
14.
A. H.
Romero
,
D. W.
Brown
, and
K.
Lindenberg
,
Phys. Rev. B
59
,
13728
(
1999
).
15.
D.
Zigmantas
,
E. L.
Read
,
T.
Mančal
,
T.
Brixner
,
A. T.
Gardiner
,
R. J.
Cogdell
, and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
12672
(
2006
).
16.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. K.
Ahn
,
T.
Mančal
,
Y. C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature (London)
446
,
782
(
2007
).
17.
D.
Abramavicius
,
B.
Palmieri
,
D. V.
Voronine
,
F.
Šanda
, and
S.
Mukamel
,
Chem. Rev.
109
,
2350
(
2009
).
18.
J. A.
Myers
,
K. L. M.
Lewis
,
F. D.
Fuller
,
P. F.
Tekavec
,
C. F.
Yocum
, and
J. P.
Ogilvie
,
J. Phys. Chem. Lett.
1
,
2774
(
2010
).
19.
G. S.
Schlau-Cohen
,
A.
Ishizaki
,
T. R.
Calhoun
,
N. S.
Ginsberg
,
M.
Ballottari
,
R.
Bassi
, and
G. R.
Fleming
,
Nat. Chem.
4
,
389
(
2012
).
20.
A.
Gelzinis
,
L.
Valkunas
,
F. D.
Fuller
,
J. P.
Ogilvie
,
S.
Mukamel
, and
D.
Abramavicius
,
New J. Phys.
15
,
075013
(
2013
).
21.
F.
Milota
,
V. I.
Prokhorenko
,
T.
Mancal
,
H.
von Berlepsch
,
O.
Bixner
,
H. F.
Kauffmann
, and
J.
Hauer
,
J. Phys. Chem. A
117
,
6007
(
2013
).
22.
G. B.
Griffin
,
S.
Ithurria
,
D. S.
Dolzhnikov
,
A.
Linkin
,
D. V.
Talapin
, and
G. S.
Engel
,
J. Chem. Phys.
138
,
014705
(
2013
).
23.
E.
Songaila
,
R.
Augulis
,
A.
Gelzinis
,
V.
Butkus
,
A.
Gall
,
C.
Büchel
,
B.
Robert
,
D.
Zigmantas
,
D.
Abramavicius
, and
L.
Valkunas
,
J. Phys. Chem. Lett.
4
,
3590
(
2013
).
24.
M.
Woerner
,
W.
Kuehn
,
P.
Bowlan
,
K.
Reimann
, and
T.
Elsaesser
,
New J. Phys.
15
,
025039
(
2013
).
25.
V. M.
Huxter
,
T. A. A.
Oliver
,
D.
Budker
, and
G. R.
Fleming
,
Nat. Phys.
9
,
744
(
2013
).
26.
E.
Jeckelmann
and
S. R.
White
,
Phys. Rev. B
57
,
6376
(
1998
).
27.
M.
Hohenadler
,
H. G.
Evertz
, and
W.
von der Linden
,
Phys. Rev. B
69
,
024301
(
2004
).
28.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
29.
J.
Strümpfer
and
K.
Schulten
,
J. Chem. Phys.
131
,
225101
(
2009
).
30.
M. J.
Škrinjar
,
D. V.
Kapor
, and
S. D.
Stojanović
,
Phys. Rev. A
38
,
6402
(
1988
).
31.
J.
Sun
,
B.
Luo
, and
Y.
Zhao
,
Phys. Rev. B
82
,
014305
(
2010
).
32.
B.
Luo
,
J.
Ye
, and
Y.
Zhao
,
Phys. Status Solidi C
8
,
70
(
2011
).
33.
35.
J.
Sun
,
L.
Duan
, and
Y.
Zhao
,
J. Chem. Phys.
138
,
174116
(
2013
).
37.
A. S.
Davydov
and
N. I.
Kislucha
,
Phys. Status Solidi B
59
,
465
(
1973
).
38.
B.
Luo
,
J.
Ye
,
C.
Guan
, and
Y.
Zhao
,
Phys. Chem. Chem. Phys.
12
,
15073
(
2010
).
39.
A. W.
Chin
,
J.
Prior
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. Lett.
107
,
160601
(
2011
).
40.
J.
Ye
,
K.
Sun
,
Y.
Zhao
,
Y.
Yu
,
C. K.
Lee
, and
J.
Cao
,
J. Chem. Phys.
136
,
245104
(
2012
).
41.
Y.
Zhao
,
D. W.
Brown
, and
K.
Lindenberg
,
J. Chem. Phys.
106
,
5622
(
1997
).
42.
Y.-C.
Cheng
and
R. J.
Silbey
,
J. Chem. Phys.
128
,
114713
(
2008
).
43.
P.
Hamm
and
G. P.
Tsironis
,
Phys. Rev. B
78
,
092301
(
2008
).
44.
Q.
Liu
,
Y.
Zhao
,
W.
Wang
, and
T.
Kato
,
Phys. Rev. B
79
,
165105
(
2009
).
45.
V. M.
Kenkre
and
D. K.
Campbell
,
Phys. Rev. B
34
,
4959
(
1986
).
46.
V. M.
Kenkre
and
H.-L.
Wu
,
Phys. Rev. B
39
,
6907
(
1989
).
47.
B.
Esser
and
H.
Schanz
,
Z. Phys. B: Condens. Matter
96
,
553
(
1995
).
48.
A.
Gelzinis
,
D.
Abramavicius
, and
L.
Valkunas
,
Phys. Rev. B
84
,
245430
(
2011
).
50.
I.
Frenkel
and
J.
Frenkel
,
Wave Mechanics: Elementary Theory
(
Oxford University Press
,
1936
).
51.
V.
Butkus
,
L.
Valkunas
, and
D.
Abramavicius
,
J. Chem. Phys.
137
,
044513
(
2012
).
52.
V.
Balevičius
 Jr.
,
A.
Gelzinis
,
D.
Abramavicius
, and
L.
Valkunas
,
J. Phys. Chem. B
117
(
38
),
11031
(
2013
).
53.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
54.
A.
Ishizaki
,
T. R.
Calhoun
,
G. S.
Schlau-Cohen
, and
G. R.
Fleming
,
Phys. Chem. Chem. Phys.
12
,
7319
(
2010
).
55.
G. R.
Fleming
and
M.
Cho
,
Annu. Rev. Phys. Chem.
47
,
109
(
1996
).
56.
F. C.
Spano
,
Acc. Chem. Res.
43
,
429
(
2010
).
57.
P.
Bodis
,
E.
Schwartz
,
M.
Koepf
,
J. J. L. M.
Cornelissen
,
A. E.
Rowan
,
R. J. M.
Nolte
, and
S.
Woutersen
,
J. Chem. Phys.
131
,
124503
(
2009
).
58.
F. C.
Spano
and
L.
Silvestri
,
J. Chem. Phys.
132
,
094704
(
2010
).
59.
A. G.
Redfield
,
IBM J. Res. Develop.
1
,
19
(
1957
).
60.
61.
M.
Yang
and
G. R.
Fleming
,
Chem. Phys.
282
,
161
(
2002
).
62.
M.
Furukawa
,
K.
Mizuno
,
A.
Matsui
,
N.
Tamai
, and
I.
Yamazaki
,
Chem. Phys.
138
,
423
(
1989
).
63.
R. W. I.
de Boer
,
M. E.
Gershenson
,
A. F.
Morpurgo
, and
V.
Podzorov
,
Phys. Status Solidi B
201
,
1302
(
2004
).
64.
S. M.
Vlaming
,
V. A.
Malyshev
, and
J.
Knoester
,
Phys. Rev. B
79
,
205121
(
2009
).
65.
U.
Ermler
,
G.
Fritzsch
,
S. K.
Buchanan
, and
H.
Michel
,
Structure
2
,
925
(
1994
).
66.
Y.
Umena
,
K.
Kawakami
,
J.-R.
Shen
, and
N.
Kamiya
,
Nature (London)
473
,
55
(
2011
).
67.
D.
Hayes
,
G. B.
Griffin
, and
G. S.
Engel
,
Science
340
,
1431
(
2013
).
68.
E.
Harel
and
G. S.
Engel
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
706
(
2012
).
69.
A. F.
Fidler
,
E.
Harel
,
P. D.
Long
, and
G. S.
Engel
,
J. Phys. Chem. A
116
,
282
(
2012
).
70.
A. F.
Fidler
,
V. P.
Singh
,
P. D.
Long
,
P. D.
Dahlberg
, and
G. S.
Engel
,
J. Phys. Chem. Lett.
4
,
1404
(
2013
).
71.
T. D.
Huynh
,
K.-W.
Sun
,
M.
Gelin
, and
Y.
Zhao
,
J. Chem. Phys.
139
,
104103
(
2013
).
72.
73.
T.
Mančal
,
L.
Valkunas
, and
G. R.
Fleming
,
Chem. Phys. Lett.
432
,
301
(
2006
).
74.
R.
Jankowiak
,
M.
Reppert
,
V.
Zazubovich
,
J.
Pieper
, and
T.
Reinot
,
Chem. Rev.
111
,
4546
(
2011
).
You do not currently have access to this content.