An efficient method of calculating the natural bond orbitals (NBOs) based on a truncation of the entire density matrix of a whole system is presented for large-scale density functional theory calculations. The method recovers an orbital picture for O(N) electronic structure methods which directly evaluate the density matrix without using Kohn-Sham orbitals, thus enabling quantitative analysis of chemical reactions in large-scale systems in the language of localized Lewis-type chemical bonds. With the density matrix calculated by either an exact diagonalization or O(N) method, the computational cost is O(1) for the calculation of NBOs associated with a local region where a chemical reaction takes place. As an illustration of the method, we demonstrate how an electronic structure in a local region of interest can be analyzed by NBOs in a large-scale first-principles molecular dynamics simulation for a liquid electrolyte bulk model (propylene carbonate + LiBF4).

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
) and references therein.
4.
S.
Goedecker
and
G. E.
Scuseria
,
Comput. Sci. Eng.
5
,
14
(
2003
).
5.
D. R.
Bowler
and
T.
Miyazaki
,
Rep. Prog. Phys.
75
,
036503
(
2012
) and references therein.
6.
H.
Sawada
,
S.
Taniguchi
,
K.
Kawakami
, and
T.
Ozaki
,
Modell. Simul. Mater. Sci. Eng.
21
,
045012
(
2013
).
7.
T.
Ohwaki
,
M.
Otani
,
T.
Ikeshoji
, and
T.
Ozaki
,
J. Chem. Phys.
136
,
134101
(
2012
).
8.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev.
88
,
899
(
1988
).
9.
F.
Weinhold
,
Natural Bond Orbital Methods
,
Encyclopedia of Computational Chemistry
, Vol.
3
, edited by
P. v. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
 III
, and
P. R.
Schreiner
(
John Wiley & Sons
,
Chichester, UK
,
1998
), pp.
1792
1811
.
10.
F.
Weinhold
and
C. R.
Landis
,
Chem. Ed.: Res. Pract.
2
,
91
(
2001
).
11.
F.
Weinhold
and
C. R.
Landis
,
Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective
(
Cambridge University Press
,
2005
).
12.
B. D.
Dunnington
and
J. R.
Schmidt
,
J. Chem. Theory Comput.
8
,
1902
(
2012
).
13.
L. P.
Lee
,
D. J.
Cole
,
M. C.
Payne
, and
C.-K.
Skylaris
,
J. Comput. Chem.
34
,
429
(
2013
). In this report, they show that results of NBO analysis based on the Kohn-Sham method (obtained with ONETEP) have good agreements with ones based on the Hartree-Fock method (obtained with GAMESS), which indicates the enough credibility of NBOs calculated from a Kohn-Sham density matrix.
14.
E.
Prodan
and
W.
Kohn
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
11635
(
2005
).
16.
W.
Yang
and
T.
Lee
,
J. Chem. Phys.
103
,
5674
(
1995
).
17.
J.
Khandogin
,
K.
Musier-Forsyth
, and
D. M.
York
,
J. Mol. Biol.
330
,
993
(
2003
).
18.
19.
A. E.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
78
,
4066
(
1983
).
20.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
21.
J. P.
Foster
and
F.
Weinhold
,
J. Am. Chem. Soc.
102
,
7211
(
1980
).
22.
B. C.
Carlson
and
J. M.
Keller
,
Phys. Rev.
105
,
102
(
1957
).
23.
NLMOs are alternatives to canonical delocalized MOs with 2 or 0 populations and generated by Jacobi transformation of a density matrix in full basis of NBOs to obtain maximum occupancies on bonding orbitals. NLMOs and canonical MOs are related to each other through the unitary transformation. See
A. E.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
83
,
1736
(
1985
).
24.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
25.
K.
Kitaura
,
S.-I.
Sugiki
,
T.
Nakano
,
Y.
Komeiji
, and
M.
Uebayasi
,
Chem. Phys. Lett.
336
,
163
(
2001
).
26.
S.
Tsuneyuki
,
T.
Kobori
,
K.
Akagi
,
K.
Sodeyama
,
K.
Terakura
, and
H.
Fukuyama
,
Chem. Phys. Lett.
476
,
104
(
2009
).
27.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
72
,
045121
(
2005
).
28.
See http://www.openmx-square.org/ for the code, OpenMX, pseudo-atomic basis functions and pseudopotentials.
29.
30.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
69
,
195113
(
2004
).
31.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
32.
P. E.
Blöchl
,
Phys. Rev. B
41
,
5414
(
1990
).
33.
T.
Ozaki
and
K.
Terakura
,
Phys. Rev. B
64
,
195126
(
2001
).
34.
35.
T.
Ozaki
,
M.
Aoki
, and
D. G.
Pettifor
,
Phys. Rev. B
61
,
7972
(
2000
).
36.
R.
Haydock
,
V.
Heine
, and
M. J.
Kelly
,
J. Phys. C
5
,
2845
(
1972
);
R.
Haydock
,
V.
Heine
, and
M. J.
Kelly
,
J. Phys. C
8
,
2591
(
1975
).
37.
R.
Haydock
,
Solid State Phys.
35
,
215
(
1980
).
38.
A precedential application of the NBO analysis to DFT calculations adopting finite-sized atomic basis sets is reported in Ref. 13, in which PAOs are used as initial orbital sets for optimization of non-orthogonal generalized Wannier functions.
39.
Lithium Batteries: Science and Technology
, edited by
G.-A.
Nazri
and
G.
Pistoia
(
Springer
,
2004
).
40.
A.
Kraytsberg
and
Y.
Ein-Eli
,
J. Power Sources
196
,
886
(
2011
).
41.
M.
Takeuchi
,
Y.
Kameda
,
Y.
Umebayashi
,
S.
Ogawa
,
T.
Sonoda
,
S.
Ishiguro
,
M.
Fujita
, and
M.
Sano
,
J. Mol. Liquids
148
,
99
(
2009
).
42.
Lithium-Ion Batteries: Solid Electrolyte Interphase
, edited by
P. B.
Balbuena
and
Y. X.
Wang
(
Imperial College Press
,
2004
).
44.
S.-P.
Kim
,
A. C. T.
van Duin
, and
V. B.
Shenoy
,
J. Power Sources
196
,
8590
(
2011
).
45.
K.
Nishikawa
,
T.
Mori
,
T.
Nishida
,
Y.
Fukunaka
,
M.
Rosso
, and
T.
Homma
,
J. Electrochem. Soc.
157
,
A1212
(
2010
).
46.
H.
Yoshida
,
T.
Fukunaga
,
T.
Hazama
,
M.
Terasaki
,
M.
Mizutani
, and
M.
Yamachi
,
J. Power Sources
68
,
311
(
1997
).
47.
M.
Otani
and
O.
Sugino
,
Phys. Rev. B
73
,
115407
(
2006
).
48.
O.
Sugino
,
I.
Hamada
,
M.
Otani
,
Y.
Morikawa
,
T.
Ikeshoji
, and
Y.
Okamoto
,
Surf. Sci.
601
,
5237
(
2007
).
49.
M.
Otani
,
I.
Hamada
,
O.
Sugino
,
Y.
Morioka
,
Y.
Okamoto
, and
T.
Ikeshoji
,
J. Phys. Soc. Jpn.
77
,
024802
(
2008
).
50.
O(N)-DFT calculation was performed using a generalized gradient approximation (GGA-PBE).51 The Krylov-method parameters used in the O(N) calculations were determined so as to guarantee a precision of about 10−5 hartree/atom in the total energy compared to the results by the exact diagonalization for the PC bulk. The radius of truncated cluster was set at 8.0 Ǻ. The energy cutoff of 210 Ry was used for the numerical integrations. The MD calculations were carried out in an NVT ensemble at 400 K. Velocities of atoms were scaled every 20 MD steps to keep the temperature constant. The time-step width was 1.2 fs with substitution of the deuterium mass for hydrogen atoms. The total MD simulation time without the relaxation process was about 10.3 ps (8580 MD-steps). The basis sets adopted in the calculation were double valence plus single-polarization types, s3p2, s2p1, and s2p2d1, for Li, H, and the other atoms, respectively. The cutoff radii of the PAO were 10.0, 9.0, and 7.0 bohrs for Li, B, and the other atoms, respectively. Especially for the basis sets placed on the PC molecules, we adopted the optimized PAO basis functions in order to reduce basis-set superposition error (BSSE) among the PC molecules.7 All basis sets and pseudo-potentials were adopted from the OpenMX Database ver.
2013
.28 
51.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
52.
All high-occupancy bonding and lone-pair orbitals were detected based on populations more than 1.75 electrons in the NHO-calculation process. We performed the analyses within the description of single- and two-center NBOs to obtain typical valence patterns of each atom in the molecule not focusing on three-center NBOs10,11 or resonance states. With regard to electronic resonance states in molecules described in the NBO scheme, see
E. D.
Glendening
,
J. K.
Badenhoop
, and
F.
Weinhold
,
J. Comput. Chem.
19
,
628
(
1998
).
You do not currently have access to this content.