Environmentally induced fluctuations of the optical gap play a crucial role in electronic energy transfer dynamics. One of the simplest approaches to incorporate such fluctuations in energy transfer dynamics is the well known Haken-Strobl-Reineker (HSR) model, in which the energy-gap fluctuation is approximated as white noise. Recently, several groups have employed molecular dynamics simulations and excited-state calculations in conjunction to account for excitation energies’ thermal fluctuations. On the other hand, since the original work of HSR, many groups have employed stochastic models to simulate the same transfer dynamics. Here, we discuss a rigorous connection between the stochastic and the atomistic bath models. If the phonon bath is treated classically, time evolution of the exciton-phonon system can be described by Ehrenfest dynamics. To establish the relationship between the stochastic and atomistic bath models, we employ a projection operator technique to derive the generalized Langevin equations for the energy-gap fluctuations. The stochastic bath model can be obtained as an approximation of the atomistic Ehrenfest equations via the generalized Langevin approach. Based on this connection, we propose a novel scheme to take account of reorganization effects within the framework of stochastic models. The proposed scheme provides a better description of the population dynamics especially in the regime of strong exciton-phonon coupling. Finally, we discuss the effect of the bath reorganization in the absorption and fluorescence spectra of ideal J-aggregates in terms of the Stokes shifts. We find a simple expression that relates the reorganization contribution to the Stokes shifts – the reorganization shift – to the ideal or non-ideal exciton delocalization in a J-aggregate. The reorganization shift can be described by three parameters: the monomer reorganization energy, the relaxation time of the optical gap, and the exciton delocalization length. This simple relationship allows one to understand the physical origin of the Stokes shifts in molecular aggregates.

1.
R. E.
Blankenship
,
Molecular Mechanisms of Photosynthesis
(
World Scientific
,
London
,
2002
).
2.
L.
Valkunas
,
E.
Akesson
,
T.
Pullerits
, and
V.
Sundström
,
Biophys. J.
70
,
2373
(
1996
).
3.
R.
van Grondelle
and
V. I.
Novoderezhkin
,
Phys. Chem. Chem. Phys.
8
,
793
(
2006
).
4.
G. S.
Engel
,
R.
Tessa
,
L.
Elizabeth
,
T. T.-K.
Ahn
,
T.
Mancal
,
Y.-C.
Cheng
,
R.
Blankenship
, and
G.
Fleming
,
Nature (London)
446
,
782
(
2007
).
5.
F.
Caruso
,
A. W.
Chin
,
A.
Datta
,
S. F.
Huelga
, and
M. B.
Plenio
,
J. Chem. Phys.
131
,
105106
(
2009
).
6.
Y.-C.
Cheng
and
G. R.
Fleming
,
Annu. Rev. Phys. Chem.
60
,
241
(
2009
).
7.
G.
Panitchayangkoon
,
D.
Hayes
,
K. A.
Fransted
,
J. R.
Caram
,
E.
Harel
,
J.
Wen
,
R. E.
Blankenship
, and
G. S.
Engel
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
12766
(
2010
).
8.
G. D. S.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R.
van Grondelle
,
Nat. Chem.
3
,
763
(
2011
).
9.
P.
Nalbach
and
M.
Thorwart
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
2693
(
2013
).
10.
X.
Li
,
L. E.
Sinks
,
B.
Rybtchinski
, and
M. R.
Wasielewski
,
J. Am. Chem. Soc.
126
,
10810
(
2004
).
11.
T. S.
Balaban
,
Acc. Chem. Res.
38
,
612
(
2005
).
12.
M. R.
Wasielewski
,
Acc. Chem. Res.
42
,
1910
(
2009
).
13.
I.
Robel
,
V.
Subramanian
,
M.
Kuno
, and
P. V.
Kamat
,
J. Am. Chem. Soc.
128
,
2385
(
2006
).
14.
X.
Yan
,
X.
Cui
,
B.
Li
, and
L.-S.
Li
,
Nano Lett.
10
,
1869
(
2010
).
15.
J.-L.
Wang
,
C.
Wang
, and
W.
Lin
,
ACS Catal.
2
,
2630
(
2012
).
16.
H.-J.
Son
,
S.
Jin
,
S.
Patwardhan
,
S. J.
Wezenberg
,
N. C.
Jeong
,
M.
So
,
C. E.
Wilmer
,
A. A.
Sarjeant
,
G. C.
Schatz
,
R. Q.
Snurr
 et al,
J. Am. Chem. Soc.
135
,
862
(
2013
).
17.
T.
Förster
,
Discuss. Faraday Soc.
27
,
7
(
1959
).
18.
V.
Ern
,
A.
Suna
,
Y.
Tomkiewicz
,
P.
Avakian
, and
R. P.
Groff
,
Phys. Rev. B
5
,
3222
(
1972
).
19.
P. T.
Rieger
,
S. P.
Palese
, and
R. D.
Miller
,
Chem. Phys.
221
,
85
(
1997
).
20.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
Wiley-VCH
,
Berlin
,
2011
).
21.
22.
Y.
Tanimura
and
R.
Kubo
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
23.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
24.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
17255
(
2009
).
25.
P.
Rebentrost
and
A.
Aspuru-Guzik
,
J. Chem. Phys.
134
,
101103
(
2011
).
26.
J.
Zhu
,
S.
Kais
,
P.
Rebentrost
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. B
115
,
1531
(
2011
).
27.
C.
Kreisbeck
,
T.
Kramer
,
M.
Rodrìguez
, and
B.
Hein
,
J. Chem. Theory Comput.
7
,
2166
(
2011
).
28.
C.
Kreisbeck
and
T.
Kramer
,
J. Phys. Chem. Lett.
3
,
2828
(
2012
).
29.
M.
Aghtar
,
J.
Liebers
,
J.
Strümpfer
,
K.
Schulten
, and
U.
Kleinekathöfer
,
J. Chem. Phys.
136
,
214101
(
2012
).
30.
A. G.
Dijkstra
and
Y.
Tanimura
,
New J. Phys.
14
,
073027
(
2012
).
31.
L.
Mühlbacher
,
J.
Ankerhold
, and
C.
Escher
,
J. Chem. Phys.
121
,
12696
(
2004
).
32.
L.
Mühlbacher
and
U.
Kleinekathöfer
,
J. Phys. Chem. B
116
,
3900
(
2012
).
33.
S.
Jang
,
Y.-C.
Cheng
,
D. R.
Reichman
, and
J. D.
Eaves
,
J. Chem. Phys.
129
,
101104
(
2008
).
34.
S.
Jang
,
J. Chem. Phys.
135
,
034105
(
2011
).
35.
A.
Kolli
,
A.
Nazir
, and
A.
Olaya-Castro
,
J. Chem. Phys.
135
,
154112
(
2011
).
36.
L.
Diósi
,
N.
Gisin
, and
W. T.
Strunz
,
Phys. Rev. A
58
,
1699
(
1998
).
37.
G.
Ritschel
,
J.
Roden
,
W. T.
Strunz
,
A.
Aspuru-Guzik
, and
A.
Eisfeld
,
J. Phys. Chem. Lett.
2
,
2912
(
2011
).
38.
G.
Ritschel
,
J.
Roden
,
W. T.
Strunz
, and
A.
Eisfeld
,
New J. Phys.
13
,
113034
(
2011
).
39.
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
, in
Quantum Efficiency in Complex Systems, Part II: From Molecular Aggregates to Organic Solar Cells
,
Semiconductors and Semimetals
Vol.
85
, edited by
M. T.
Uli Wuerfel
, and
E. R.
Weber
(
Elsevier
,
2011
), pp.
115
143
.
41.
A.
Ishizaki
,
T. R.
Calhoun
,
G. S.
Schau-Cohen
, and
G. R.
Fleming
,
Phys. Chem. Chem. Phys.
12
,
7319
(
2010
).
42.
O.
Kühn
, and
S.
Lochbrunner
, in
Quantum Efficiency in Complex Systems, Part II: From Molecular Aggregates to Organic Solar Cells
,
Semiconductors and Semimetals
Vol.
85
, edited by
M. T.
Uli Wüerfel
, and
E. R.
Weber
(
Elsevier
,
2011
), p.
47
.
43.
L. A.
Pachon
and
P.
Brumer
,
Phys. Chem. Chem. Phys.
14
,
10094
(
2012
).
44.
R.
Biele
and
R.
D'Agosta
,
J. Phys. Condens. Matter
24
,
273201
(
2012
).
45.
T.
Renger
and
F.
Muh
,
Phys. Chem. Chem. Phys.
15
,
3348
(
2013
).
46.
S. K.
Saikin
,
A.
Eisfeld
,
S.
Valleau
, and
A.
Aspuru-Guzik
,
Nanophotonics
2
,
21
(
2013
).
47.
S.
Jang
and
Y.-C.
Cheng
,
WIREs: Comput. Mol. Sci.
3
,
84
(
2013
).
48.
J. A.
Parkhill
,
T.
Markovich
,
D. G.
Tempel
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
137
,
22A547
(
2012
).
49.
H.
Haken
and
P.
Reineker
,
Z. Phys.
249
,
253
(
1972
).
50.
H.
Haken
and
G.
Strobl
,
Z. Phys.
262
,
135
(
1973
).
51.
C.
Warns
,
I.
Barvik
, and
P.
Reineker
,
Phys. Rev. E
57
,
3928
(
1998
).
52.
I.
Barvík
,
C.
Warns
,
T.
Neidlinger
, and
P.
Reineker
,
Chem. Phys.
240
,
173
(
1999
).
53.
A.
Damjanovíc
,
I.
Kosztin
,
U.
Kleinekathöfer
, and
K.
Schulten
,
Phys. Rev. E
65
,
031919
(
2002
).
54.
C.
Olbrich
,
J.
Strümpfer
,
K.
Schulten
, and
U.
Kleinekathöfer
,
J. Phys. Chem. B
115
,
758
(
2011
).
55.
C.
Olbrich
,
J.
Strümpfer
,
K.
Schulten
, and
U.
Kleinekathöfer
,
J. Phys. Chem. Lett.
2
,
1771
(
2011
).
56.
C.
Olbrich
,
T. H. C.
Jansen
,
J.
Liebers
,
M.
Aghtar
,
J.
Strümpfer
,
K.
Schulten
,
J.
Knoester
, and
U.
Kleinekathöfer
,
J. Phys. Chem. B
115
,
8609
(
2011
).
57.
S.
Shim
,
P.
Rebentrost
,
S.
Valleau
, and
A.
Aspuru-Guzik
,
Biophys. J.
102
,
649
(
2012
).
58.
T.
Fujita
,
J. C.
Brookes
,
S. K.
Saikin
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. Lett.
3
,
2357
(
2012
).
59.
A.
Ishizaki
and
G. R.
Fleming
,
J. Phys. Chem. B
115
,
6227
(
2011
).
60.
X.
Zhong
and
Y.
Zhao
,
J. Chem. Phys.
135
,
134110
(
2011
).
61.
T. C.
Berkelbach
,
T. E.
Markland
, and
D. R.
Reichman
,
J. Chem. Phys.
136
,
084104
(
2012
).
62.
S.
Valleau
,
A.
Eisfeld
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
137
,
224103
(
2012
).
63.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
).
64.
65.
B. J.
Berne
and
G. D.
Harp
,
Adv. Chem. Phys.
17
,
63
(
1970
).
66.
P. W.
Anderson
,
J. Phys. Soc. Jpn.
9
,
316
(
1954
).
67.
R.
Kubo
,
J. Phys. Soc. Jpn.
9
,
935
(
1954
).
68.
J.
Huh
,
S. K.
Saikin
,
J. C.
Brookes
,
S.
Valleau
,
T.
Fujita
, and
A.
Aspuru-Guzik
,
J. Am. Chem. Soc.
136
,
2048
(
2014
).
69.
T.
Fujita
,
J.
Huh
,
S. K.
Saikin
,
J. C.
Brookes
, and
A.
Aspuru-Guzik
,
Photosyn. Res.
120
,
273
(
2014
); online at http://link.springer.com/article/10.1007%2Fs11120-014-9978-7.
70.
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
570
(
1957
).
71.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1971
).
72.
H.
Mori
,
Prog. Theor. Phys.
34
,
399
(
1965
).
73.
H.
De Raedt
and
B.
De Raedt
,
Phys. Rev. B
15
,
5379
(
1977
).
74.
R.
Martinazzo
,
K. H.
Hughes
, and
I.
Burghardt
,
Phys. Rev. E
84
,
030102
(
2011
).
75.
B. J.
Berne
,
J. P.
Boon
, and
S. A.
Rice
,
J. Chem. Phys.
45
,
1086
(
1966
).
76.
J.
Roden
,
W. T.
Strunz
,
K. B.
Whaley
, and
A.
Eisfeld
,
J. Chem. Phys.
137
,
204110
(
2012
).
77.
A. W.
Chin
,
J.
Prior
,
R.
Rosenbach
,
F.
Caycedo-Soler
,
S. F.
Huelga
, and
M. B.
Plenio
,
Nat. Phys.
9
,
113
(
2013
).
78.
N. P. D.
Sawaya
,
J.
Huh
,
T.
Fujita
,
S. K.
Saikin
, and
A.
Aspuru-Guzik
, “
A portrait of exciton transport in large chlorosome model through quantum simulations on parallel hardware
” (unpublished).
79.
A.
Bastida
,
C.
Cruz
,
J. Z.
niga
,
A.
Requena
, and
B.
Miguel
,
Chem. Phys. Lett.
417
,
53
(
2006
).
80.
D. V.
Shalashilin
,
J. Chem. Phys.
130
,
244101
(
2009
).
81.
D. V.
Shalashilin
,
Faraday Discuss.
153
,
105
(
2011
).
82.
E. E.
Jelley
,
Nature (London)
138
,
1009
(
1936
).
84.
F.
Würthner
,
T. E.
Kaiser
, and
C. R.
Saha-Möller
,
Angew. Chem., Int. Ed.
50
,
3376
(
2011
).
85.
M.
Lax
,
J. Chem. Phys.
20
,
1752
(
1952
).
86.
W. B.
Bosma
,
Y. J.
Yan
, and
S.
Mukamel
,
Phys. Rev. A
42
,
6920
(
1990
).
87.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
88.
J. E.
Donehue
,
O. P.
Varnavski
,
R.
Cemborski
,
M.
Iyoda
, and
T.
Goodson
,
J. Am. Chem. Soc.
133
,
4819
(
2011
).
89.
M.
Dahlbom
,
T.
Pullerits
,
S.
Mukamel
, and
V.
Sundström
,
J. Phys. Chem. B
105
,
5515
(
2001
).
90.
V. I.
Novoderezhkin
,
E. G.
Andrizhiyevskaya
,
J. P.
Dekker
, and
R.
van Grondelle
,
Biophys. J.
89
,
1464
(
2005
).
You do not currently have access to this content.