We present a new, nucleotide-level model for RNA, oxRNA, based on the coarse-graining methodology recently developed for the oxDNA model of DNA. The model is designed to reproduce structural, mechanical, and thermodynamic properties of RNA, and the coarse-graining level aims to retain the relevant physics for RNA hybridization and the structure of single- and double-stranded RNA. In order to explore its strengths and weaknesses, we test the model in a range of nanotechnological and biological settings. Applications explored include the folding thermodynamics of a pseudoknot, the formation of a kissing loop complex, the structure of a hexagonal RNA nanoring, and the unzipping of a hairpin motif. We argue that the model can be used for efficient simulations of the structure of systems with thousands of base pairs, and for the assembly of systems of up to hundreds of base pairs. The source code implementing the model is released for public use.

1.
D.
Elliott
and
M.
Ladomery
,
Molecular Biology of RNA
(
Oxford University Press
,
2011
).
2.
W.
Saenger
,
Principles of Nucleic Acid Structure
(
Springer-Verlag
,
New York
,
1984
).
3.
T.
Kin
 et al.,
Nucleic Acids Res.
35
,
D145
(
2007
).
5.
J.
Bath
,
S. J.
Green
, and
A. J.
Turberfield
,
Angew. Chem., Int. Ed.
117
,
4432
(
2005
).
6.
J.
Bath
,
S. J.
Green
,
K. E.
Allan
, and
A. J.
Turberfield
,
Small
5
,
1513
(
2009
).
7.
P. W. K.
Rothemund
,
Nature
440
,
297
(
2006
).
10.
Y.
Benenson
,
Curr. Opin. Biotechnol.
20
,
471
(
2009
).
11.
K. A.
Afonin
 et al.,
Nat. Nanotechnol.
5
,
676
(
2010
).
12.
A.
Chworos
 et al.,
Science
306
,
2068
(
2004
).
13.
L. M.
Hochrein
,
M.
Schwarzkopf
,
M.
Shahgholi
,
P.
Yin
, and
N. A.
Pierce
,
J. Am. Chem. Soc.
135
,
17322
(
2013
).
14.
C.
Laing
and
T.
Schlick
,
J. Phys.: Condens. Matter
22
,
283101
(
2010
).
15.
C.
Laing
and
T.
Schlick
,
Curr. Opin. Struct. Biol.
21
,
306
(
2011
).
16.
A. Y. L.
Sim
,
P.
Minary
, and
M.
Levitt
,
Curr. Opin. Struct. Biol.
22
,
273
(
2012
).
17.
M. J.
Serra
and
D. H.
Turner
,
Methods Enzymol.
259
,
242
(
1995
).
18.
T.
Xia
 et al.,
Biochemistry
37
,
14719
(
1998
).
19.
D. H.
Mathews
 et al.,
Proc. Natl. Acad. Sci. U.S.A.
101
,
7287
(
2004
).
20.
D. H.
Mathews
,
J.
Sabina
,
M.
Zuker
, and
D. H.
Turner
,
J. Mol. Biol.
288
,
911
(
1999
).
21.
A. E.
Walter
and
D. H.
Turner
,
Biochemistry
33
,
12715
(
1994
).
22.
A. E.
Walter
 et al.,
Proc. Natl. Acad. Sci. U.S.A.
91
,
9218
(
1994
).
23.
Z. J.
Lu
,
D. H.
Turner
, and
D. H.
Mathews
,
Nucleic Acids Res.
34
,
4912
(
2006
).
24.
J. N.
Zadeh
 et al.,
J. Comput. Chem.
32
,
170
(
2011
).
25.
I. L.
Hofacker
 et al.,
Monatsh. Chem.
125
,
167
(
1994
).
26.
J. S.
Reuter
and
D. H.
Mathews
,
BMC Bioinf.
11
,
129
(
2010
).
27.
C.
Flamm
,
W.
Fontana
,
I. L.
Hofacker
, and
P.
Schuster
,
RNA
6
,
325
(
2000
).
28.
A.
Xayaphoummine
,
T.
Bucher
, and
H.
Isambert
,
Nucleic Acids Res.
33
,
W605
(
2005
).
29.
G.
Weber
,
Nucleic Acids Res.
41
,
e30
(
2013
).
30.
J.
Šponer
,
P.
Jurečka
, and
P.
Hobza
,
J. Am. Chem. Soc.
126
,
10142
(
2004
).
31.
D.
Svozil
,
P.
Hobza
, and
J.
Šponer
,
J. Phys. Chem. B
114
,
1191
(
2010
).
32.
W. D.
Cornell
 et al.,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
33.
B. R.
Brooks
 et al.,
J. Comput. Chem.
4
,
187
(
1983
).
34.
G. R.
Bowman
 et al.,
J. Am. Chem. Soc.
130
,
9676
(
2008
).
35.
P.
Kührová
,
B.
Pavel
,
R. B.
Best
,
J.
Šponer
, and
M.
Otyepka
,
J. Chem. Theory Comput.
9
,
2115
(
2013
).
36.
P.
Minary
,
M. E.
Tuckerman
, and
G. J.
Martyna
,
SIAM J. Sci. Comput.
30
,
2055
(
2008
).
37.
A. Y.
Sim
,
M.
Levitt
, and
P.
Minary
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
2890
(
2012
).
38.
M.
Krepl
 et al.,
J. Chem. Theory Comput.
8
,
2506
(
2012
).
39.
J.
Yoo
and
A.
Aksimentiev
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
20099
20104
(
2013
).
40.
A. T.
Guy
,
T. J.
Piggot
, and
S.
Khalid
,
Biophys. J.
103
,
1028
(
2012
).
41.
M. A.
Jonikas
 et al.,
RNA
15
,
189
(
2009
).
42.
M.
Parisien
and
F.
Major
,
Nature
452
,
51
(
2008
).
43.
R.
Das
,
J.
Karanicolas
, and
D.
Baker
,
Nat. Methods
7
,
291
(
2010
).
44.
M.
Paliy
,
R.
Melnik
, and
B. A.
Shapiro
,
PB
7
,
036001
(
2010
).
45.
Z.
Xia
,
D. R.
Bell
,
Y.
Shi
, and
P.
Ren
,
J. Phys. Chem. B
117
,
3135
(
2013
).
46.
S.
Pasquali
and
P.
Derreumaux
,
J. Phys. Chem. B
114
,
11957
(
2010
).
47.
T.
Cragnolini
,
P.
Derreumaux
, and
S.
Pasquali
,
J. Phys. Chem. B
117
,
8047
(
2013
).
49.
N. A.
Denesyuk
and
D.
Thirumalai
,
J. Phys. Chem. B
117
,
4901
(
2013
).
50.
C.
Hyeon
and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6789
(
2005
).
51.
D.
Jost
and
R.
Everaers
,
J. Chem. Phys.
132
,
095101
(
2010
).
52.
S.
Cao
and
S.-J.
Chen
,
RNA
11
,
1884
(
2005
).
53.
P.
Šulc
 et al.,
J. Chem. Phys.
137
,
135101
(
2012
).
54.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
,
J. Chem. Phys.
134
,
085101
(
2011
).
55.
T. E.
Ouldridge
, “
Coarse-grained modelling of DNA and DNA nanotechnology
,” Ph.D. thesis (
Oxford University
,
2011
).
56.
T. E.
Ouldridge
 et al.,
ACS Nano
7
,
2479
(
2013
).
57.
P.
Šulc
,
T. E.
Ouldridge
,
F.
Romano
,
J. P. K.
Doye
, and
A. A.
Louis
,
Nat. Comput.
(
2013
); e-print arXiv:1212.4536.
58.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
,
Phys. Rev. Lett.
104
,
178101
(
2010
).
59.
F.
Romano
,
A.
Hudson
,
J. P. K.
Doye
,
T. E.
Ouldridge
, and
A. A.
Louis
,
J. Chem. Phys.
136
,
215102
(
2012
).
60.
N.
Srinivas
 et al.,
Nucleic Acids Res.
41
,
10641
(
2013
).
61.
C.
Matek
,
T. E.
Ouldridge
,
A.
Levy
,
J. P. K.
Doye
, and
A. A.
Louis
,
J. Phys. Chem. B
116
,
11616
(
2012
).
62.
F.
Romano
,
D.
Chakraborty
,
J. P. K.
Doye
,
T. E.
Ouldridge
, and
A. A.
Louis
,
J. Chem. Phys.
138
,
085101
(
2013
).
63.
T. E.
Ouldridge
,
P.
Šulc
,
F.
Romano
,
J. P. K.
Doye
, and
A. A.
Louis
,
Nucleic Acids Res.
41
,
8886
(
2013
).
64.
See supplementary material at http://dx.doi.org/10.1063/1.4881424 for the detailed description of the nucleotide representation and interaction potentials of oxRNA, the description of the fitting of a helical axis to the duplex, and the discussion of the umbrella sampling method.
65.
N.
Markham
and
M.
Zuker
, “
Unafold
,”
Bioinformatics
(
Humana Press
,
2008
).
66.
I. L.
Hofacker
,
Nucleic Acids Res.
31
,
3429
(
2003
).
67.
S.
Bellaousov
,
J. S.
Reuter
,
M. G.
Seetin
, and
D. H.
Mathews
,
Nucleic Acids Res.
41
,
W471
(
2013
).
68.
J. P. K.
Doye
 et al.,
Phys. Chem. Chem. Phys.
15
,
20395
(
2013
).
69.
S.
Whitelam
,
E. H.
Feng
,
M. F.
Hagan
, and
P. L.
Geissler
,
Soft Matter
5
,
1251
(
2009
).
70.
T.
Schlick
,
Molecular Modeling and Simulation: An Interdisciplinary Guide
(
Springer
,
2010
).
71.
J.
Russo
,
P.
Tartaglia
, and
F.
Sciortino
,
J. Chem. Phys.
131
,
014504
(
2009
).
72.
G.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
73.
T. E.
Ouldridge
,
A. A.
Louis
, and
J. P. K.
Doye
,
J. Phys.: Condens. Matter
22
,
104102
(
2010
).
74.
T. E.
Ouldridge
,
J. Chem. Phys.
137
,
144105
(
2012
).
75.
D. H.
De Jong
 et al.,
J. Comput. Chem.
32
,
1919
(
2011
).
76.
J.
SantaLucia
, Jr.
and
D.
Hicks
,
Annu. Rev. Biophys. Biomol. Struct.
33
,
415
(
2004
).
77.
D. V.
Pyshnyi
and
E. M.
Ivanova
,
Nucleosides, Nucleotides Nucleic Acids
23
,
1057
(
2004
).
78.
S.
Neidle
,
Principles of Nucleic Acid Structure
(
Elsevier
,
2010
).
79.
S.
Neidle
,
Oxford Handbook of Nucleic Acid Structure
(
Oxford University Press
,
1999
).
80.
P.
Kebbekus
,
D. E.
Draper
, and
P.
Hagerman
,
Biochemistry
34
,
4354
(
1995
).
81.
R.
Lavery
,
M.
Moakher
,
J. H.
Maddocks
,
D.
Petkeviciute
, and
K.
Zakrzewska
,
Nucleic Acids Res.
37
,
5917
(
2009
).
82.
J.
Abels
,
F.
Moreno-Herrero
,
T.
Van der Heijden
,
C.
Dekker
, and
N.
Dekker
,
Biophys. J.
88
,
2737
(
2005
).
83.
P. J.
Hagerman
,
Annu. Rev. Biophys. Biomol. Struct.
26
,
139
(
1997
).
84.
E.
Herrero-Galán
 et al.,
J. Am. Chem. Soc.
135
,
122
(
2013
).
85.
S. F.
Edwards
and
M.
Doi
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
1986
).
86.
T.
Odijk
,
Macromolecules
28
,
7016
(
1995
).
87.
E.
Rivas
and
S. R.
Eddy
,
J. Mol. Biol.
285
,
2053
(
1999
).
88.
M.
Bon
and
H.
Orland
,
Nucleic Acids Res.
39
,
e93
(
2011
).
89.
C. A.
Theimer
and
D. P.
Giedroc
,
RNA
6
,
409
(
2000
).
90.
L. X.
Shen
and
I.
Tinoco
, Jr.
,
J. Mol. Biol.
247
,
963
(
1995
).
91.
Y. G.
Yingling
and
B. A.
Shapiro
,
Nano Lett.
7
,
2328
(
2007
).
92.
N.
Salim
 et al.,
Biophys. J.
102
,
1097
(
2012
).
93.
W. W.
Grabow
 et al.,
Nano Lett.
11
,
878
(
2011
).
94.
L.
Rovigatti
,
P.
Šulc
,
I. Z.
Reguly
, and
F.
Romano
, “
A comparison between parallelization approaches in molecular dynamics simulations on GPUs
,” preprint arXiv:1401.4350 (
2014
).
95.
Y.
Byun
and
K.
Han
,
Nucleic Acids Res.
34
,
W416
(
2006
).
96.
M.
Manosas
,
D.
Collin
, and
F.
Ritort
,
Phys. Rev. Lett.
96
,
218301
(
2006
).
97.
C.
Bizarro
,
A.
Alemany
, and
F.
Ritort
,
Nucleic Acids Res.
40
,
6922
(
2012
).
98.
W.
Stephenson
 et al.,
Phys. Chem. Chem. Phys.
16
,
906
(
2014
).
99.
C.
Hyeon
and
D.
Thirumulai
,
Biophys. J.
92
,
731
(
2007
).
100.
C.
Hyeon
,
R. I.
Dima
, and
D.
Thirumalai
,
Structure
14
,
1633
(
2006
).
101.
A. A.
Louis
,
J. Phys.: Condens. Matter
14
,
9187
(
2002
).
102.
A. A.
Louis
, preprint arXiv:1001.1097 (
2010
).

Supplementary Material

You do not currently have access to this content.