We present a two-band model based on periodic Hückel theory, which is capable of predicting the existence and position of Dirac cones in the first Brillouin zone of an infinite class of two-dimensional periodic carbon networks, obtained by systematic perturbation of the graphene connectivity by bond decoration, that is by inclusion of arbitrary π-electron Hückel networks into each of the three carbon–carbon π-bonds within the graphene unit cell. The bond decoration process can fundamentally modify the graphene unit cell and honeycomb connectivity, representing a simple and general way to describe many cases of graphene chemical functionalization of experimental interest, such as graphyne, janusgraphenes, and chlorographenes. Exact mathematical conditions for the presence of Dirac cones in the spectrum of the resulting two-dimensional π-networks are formulated in terms of the spectral properties of the decorating graphs. Our method predicts the existence of Dirac cones in experimentally characterized janusgraphenes and chlorographenes, recently speculated on the basis of density functional theory calculations. For these cases, our approach provides a proof of the existence of Dirac cones, and can be carried out at the cost of a back of the envelope calculation, bypassing any diagonalization step, even within Hückel theory.

1.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
).
2.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature (London)
438
,
197
(
2005
).
3.
M. I.
Katsnelson
,
K. S.
Novoselov
, and
A. K.
Geim
,
Nature Phys.
2
,
620
(
2006
).
4.
B. G.
Kim
and
H. J.
Choi
,
Phys. Rev. B
86
,
115435
(
2012
).
5.
J.-J.
Zheng
,
X.
Zhao
,
S. B.
Zhang
, and
X.
Gao
,
J. Chem. Phys.
138
,
244708
(
2013
).
6.
F.
Ouyang
,
S.
Peng
,
Z.
Liu
, and
Z.
Liu
,
ACS Nano
5
,
4023
(
2011
).
7.
M.
Yang
,
L.
Zhou
,
J.
Wang
,
Z.
Liu
, and
Z.
Liu
,
J. Phys. Chem. C
116
,
844
(
2012
).
8.
L.
Zhang
,
J.
Yu
,
M.
Yang
,
Q.
Xie
,
H.
Peng
, and
Z.
Liu
,
Nat. Commun.
4
,
1443
(
2013
).
9.
Y.
Ma
,
Y.
Dai
, and
B.
Huang
,
J. Phys. Chem. Lett.
4
,
2471
(
2013
).
10.
A.
Soncini
,
P. W.
Fowler
,
I.
Cernusak
, and
E.
Steiner
,
Phys. Chem. Chem. Phys.
3
,
3920
(
2001
).
11.
A.
Soncini
,
P. W.
Fowler
, and
L. W.
Jenneskens
,
Struct. Bond.
115
,
57
(
2005
).
12.
A.
Soncini
,
C.
Domene
,
J. J.
Engelberts
,
P. W.
Fowler
,
A.
Rassat
,
J. H.
van Lenthe
,
R. W. A.
Havenith
, and
L. W.
Jenneskens
,
Chem. Eur. J.
11
,
1257
(
2005
).
13.
P. W.
Fowler
,
R. W. A.
Havenith
,
L. W.
Jenneskens
,
A.
Soncini
, and
E.
Steiner
,
Chem. Commun.
2001
,
2386
.
14.
A.
Soncini
,
R. W. A.
Havenith
,
P. W.
Fowler
,
L. W.
Jenneskens
, and
E.
Steiner
,
J. Org. Chem.
67
,
4753
(
2002
).
15.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
1990
).
16.
Assuming for now that all three bonds are decorated, so that γ = 0. This is done for generality only; it does not represent a limitation of the theory. The example in Sec. III will show how to treat undecorated bonds on the same footing as decorated bonds.
17.
B. T.
Pickup
and
P. W.
Fowler
,
Chem. Phys. Lett.
459
,
198
(
2008
).
18.
I.
Gutman
and
O. E.
Polansky
,
Mathematical Concepts in Organic Chemistry
(
Springer
,
Berlin
,
1986
).
19.
Y.
Hasegawa
,
R.
Konno
,
H.
Nakano
, and
M.
Kohmoto
,
Phys. Rev. B
74
,
033413
(
2006
).
20.
C. A.
Coulson
and
G. S.
Rushbrooke
,
Proc. Camb. Philos. Soc.
36
,
193
(
1940
).
You do not currently have access to this content.