Kinetic models based on Fermi's Golden Rule are commonly employed to understand photoinduced electron transfer dynamics at molecule-semiconductor interfaces. Implicit in such second-order perturbative descriptions is the assumption that nuclear relaxation of the photoexcited electron donor is fast compared to electron injection into the semiconductor. This approximation breaks down in systems where electron transfer transitions occur on 100-fs time scale. Here, we present a fourth-order perturbative model that captures the interplay between time-coincident electron transfer and nuclear relaxation processes initiated by light absorption. The model consists of a fairly small number of parameters, which can be derived from standard spectroscopic measurements (e.g., linear absorbance, fluorescence) and/or first-principles electronic structure calculations. Insights provided by the model are illustrated for a two-level donor molecule coupled to both (i) a single acceptor level and (ii) a density of states (DOS) calculated for TiO2 using a first-principles electronic structure theory. These numerical calculations show that second-order kinetic theories fail to capture basic physical effects when the DOS exhibits narrow maxima near the energy of the molecular excited state. Overall, we conclude that the present fourth-order rate formula constitutes a rigorous and intuitive framework for understanding photoinduced electron transfer dynamics that occur on the 100-fs time scale.

1.
B.
O’Regan
and
M.
Grätzel
,
Nature (London)
353
,
737
(
1991
).
2.
M.
Grätzel
,
Nature (London)
414
,
338
(
2001
).
3.
A.
Hagfeldt
,
G.
Boschloo
,
L.
Sun
,
L.
Kloo
, and
H.
Pettersson
,
Chem. Rev.
110
,
6595
(
2010
).
4.
B. A.
Gregg
,
J. Phys. Chem. B
107
,
4688
(
2003
).
5.
Z.
Zou
,
J.
Ye
,
K.
Sayama
, and
H.
Arakawa
,
Nature (London)
414
,
625
(
2001
).
6.
J. B.
Asbury
,
E.
Hao
,
Y.
Wang
,
H. N.
Ghosh
, and
T.
Lian
,
J. Phys. Chem. B
105
,
4545
(
2001
).
7.
J. J.
Concepcion
,
J.
Jurss
,
M. K.
Brennaman
,
P. G.
Hoertz
,
A. O. T.
Patrocinio
,
N. Y. M.
Iha
,
J. L.
Templeton
, and
T. J.
Meyer
,
Acc. Chem. Res.
42
,
1954
(
2009
).
8.
P. V.
Kamat
,
J. Phys. Chem. C
111
,
2834
(
2007
).
9.
T. E.
Mallouk
,
J. Phys. Chem. Lett.
1
,
2738
(
2010
).
10.
L. C. T.
Shoute
and
G. R.
Loppnow
,
J. Am. Chem. Soc.
125
,
15636
(
2003
).
11.
A. L.
Smeigh
,
J. E.
Katz
,
B. S.
Brunschwig
,
N. S.
Lewis
, and
J. K.
McCusker
,
J. Phys. Chem. C
112
,
12065
(
2008
).
12.
A.
Morandeira
,
G.
Boschloo
,
A.
Hagfeldt
, and
L.
Hammarström
,
J. Phys. Chem. C
112
,
9530
(
2008
).
13.
W.
Xiong
,
J. E.
Laaser
,
P.
Paoprasert
,
R. A.
Franking
,
R. J.
Hamers
,
P.
Gopalan
, and
M. T.
Zanni
,
J. Am. Chem. Soc.
131
,
18040
(
2009
).
14.
S.
Ardo
and
G. J.
Meyer
,
Chem. Soc. Rev.
38
,
115
(
2009
).
15.
A. J.
Morris-Cohen
,
M. T.
Frederick
,
L. C.
Cass
, and
E. A.
Weiss
,
J. Am. Chem. Soc.
133
,
10146
(
2011
).
16.
A. S.
Huss
,
J. E.
Rossini
,
D. J.
Ceckanowicz
,
J. N.
Bohnsack
,
K. R.
Mann
,
W. L.
Gladfelter
, and
D. A.
Blank
,
J. Phys. Chem. C
115
,
2
(
2011
).
17.
H.-W.
Tseng
,
M. B.
Wilker
,
N. H.
Damraurer
, and
G.
Dukovic
,
J. Am. Chem. Soc.
135
,
3383
(
2013
).
18.
L.
Sarkany
,
J. M.
Wasylenko
,
S.
Roy
,
D. A.
Higgins
,
C. G.
Elles
, and
V.
Chikan
,
J. Phys. Chem. C
117
,
18818
(
2013
).
19.
N. A.
Anderson
and
T.
Lian
,
Annu. Rev. Phys. Chem.
56
,
491
(
2005
).
20.
W. R.
Duncan
and
O. V.
Prezhdo
,
Annu. Rev. Phys. Chem.
58
,
143
(
2007
).
21.
A. V.
Akimov
,
A. J.
Neukirch
, and
O. V.
Prezhdo
,
Chem. Rev.
113
,
4496
(
2013
).
22.
R. A.
Marcus
,
J. Chem. Phys.
43
,
679
(
1965
).
24.
H.
Gerischer
,
Photochem. Photobiol.
16
,
243
(
1972
).
25.
R. D.
Coalson
,
D. G.
Evans
, and
A.
Nitzan
,
J. Chem. Phys.
101
,
436
(
1994
).
26.
D. G.
Evans
and
R. D.
Coalson
,
J. Chem. Phys.
102
,
5658
(
1995
).
27.
A. A.
Golosov
and
D. R.
Reichman
,
J. Chem. Phys.
115
,
9848
(
2001
).
28.
A. A.
Golosov
and
D. R.
Reichman
,
J. Chem. Phys.
115
,
9862
(
2001
).
29.
D.
Egorova
,
M.
Thoss
,
W.
Domcke
, and
H.
Wang
,
J. Chem. Phys.
119
,
2761
(
2003
).
30.
I.
Kondov
and
M.
Thoss
,
J. Phys. Chem. A
110
,
1364
(
2006
).
31.
K.-K.
Liang
,
C.-K.
Lin
,
H.-C.
Chang
,
M.
Hayashi
, and
S. H.
Lin
,
J. Chem. Phys.
125
,
154706
(
2006
).
32.
S.
Welack
,
M.
Schreiber
, and
U.
Kleinekathöfer
,
J. Chem. Phys.
124
,
044712
(
2006
).
33.
M.-L.
Zhang
,
B. J.
Ka
, and
E.
Geva
,
J. Chem. Phys.
125
,
044106
(
2006
).
34.
E.
Jakubikova
,
R. C.
Snoeberger
 III
,
V. S.
Batista
, and
E. R.
Batista
,
J. Phys. Chem. A
113
,
12532
(
2009
).
35.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
36.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases
(
Oxford University Press
,
New York
,
2006
).
37.
P. F.
Barbara
,
T. J.
Meyer
, and
M. A.
Ratner
,
J. Phys. Chem.
100
,
13148
(
1996
).
38.
L.
Valkunas
,
D.
Abramavicius
, and
T.
Mančal
,
Molecular Excitation Dynamics and Relaxation: Quantum Theory and Spectroscopy
(
Wiley-VCH
,
Weinheim
,
2013
).
39.
R. A.
Marcus
,
Annu. Rev. Phys. Chem.
15
,
155
(
1964
).
40.
B. P.
Molesky
and
A. M.
Moran
,
J. Phys. Chem. A
117
,
13954
(
2013
).
41.
K.
Kwac
and
M.
Cho
,
J. Phys. Chem. A
107
,
5903
(
2003
).
42.
P. G.
Giokas
,
S. A.
Miller
,
K.
Hanson
,
M. R.
Norris
,
C. R. K.
Glasson
,
J. J.
Concepcion
,
S. E.
Bettis
,
T. J.
Meyer
, and
A. M.
Moran
,
J. Phys. Chem. C
117
,
812
(
2013
).
43.
Y. J.
Yan
,
M.
Sparpaglione
, and
S.
Mukamel
,
J. Phys. Chem.
92
,
4842
(
1988
).
44.
M.
Sparpaglione
and
S.
Mukamel
,
J. Chem. Phys.
88
,
3263
(
1988
).
45.
S. A.
Miller
,
B. A.
West
,
A. C.
Curtis
,
J. M.
Papanikolas
, and
A. M.
Moran
,
J. Chem. Phys.
135
,
081101
(
2011
).
46.
D.
Marx
and
J.
Hutter
,
Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
(
Cambridge University Press
,
Cambridge
,
2009
).
47.
G.
Paolo
,
B.
Stefano
,
B.
Nicola
,
C.
Matteo
,
C.
Roberto
,
C.
Carlo
,
C.
Davide
,
L. C.
Guido
,
C.
Matteo
,
D.
Ismaila
,
C.
Andrea Dal
,
G.
Stefano de
,
F.
Stefano
,
F.
Guido
,
G.
Ralph
,
G.
Uwe
,
G.
Christos
,
K.
Anton
,
L.
Michele
,
M.-S.
Layla
,
M.
Nicola
,
M.
Francesco
,
M.
Riccardo
,
P.
Stefano
,
P.
Alfredo
,
P.
Lorenzo
,
S.
Carlo
,
S.
Sandro
,
S.
Gabriele
,
P. S.
Ari
,
S.
Alexander
,
U.
Paolo
, and
M. W.
Renata
,
J. Phys.: Condens. Matter
21
(
39
),
395502
(
2009
).
48.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
(
1996
).
49.
D.
Vanderbilt
,
Phys. Rev. B
41
(
11
),
7892
(
1990
).
50.
L.
Hedin
,
Phys. Rev.
139
(
3A
),
A796
(
1965
).
51.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. B
34
(
8
),
5390
(
1986
).
52.
A.
Marini
,
C.
Hogan
,
M.
Grüning
, and
D.
Varsano
,
Comput. Phys. Commun.
180
(
8
),
1392
(
2009
).
53.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
(
12
),
5188
(
1976
).
54.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
(
3
),
1993
(
1991
).
55.
Y.
Georgievskii
,
C.-P.
Hsu
, and
R. A.
Marcus
,
J. Chem. Phys.
110
,
5307
(
1999
).
You do not currently have access to this content.