Although carbon nanotubes are potential candidates for DNA encapsulation and subsequent delivery of biological payloads to living cells, the thermodynamical spontaneity of DNA encapsulation under physiological conditions is still a matter of debate. Using enhanced sampling techniques, we show for the first time that, given a sufficiently large carbon nanotube, the confinement of a double-stranded DNA segment, 5′-D(*CP*GP*CP*GP*AP*AP*TP*TP*CP*GP*CP*G)-3′, is thermodynamically favourable under physiological environments (134 mM, 310 K, 1 bar), leading to DNA-nanotube hybrids with lower free energy than the unconfined biomolecule. A diameter threshold of 3 nm is established below which encapsulation is inhibited. The confined DNA segment maintains its translational mobility and exhibits the main geometrical features of the canonical B form. To accommodate itself within the nanopore, the DNA's end-to-end length increases from 3.85 nm up to approximately 4.1 nm, due to a ∼0.3 nm elastic expansion of the strand termini. The canonical Watson-Crick H-bond network is essentially conserved throughout encapsulation, showing that the contact between the DNA segment and the hydrophobic carbon walls results in minor rearrangements of the nucleotides H-bonding. The results obtained here are paramount to the usage of carbon nanotubes as encapsulation media for next generation drug delivery technologies.

1.
H.
Kumar
 et al,
Soft Matter
7
,
5898
(
2011
).
2.
B. M.
Venkatesan
and
R.
Bashir
,
Nat. Nanotechnol.
6
,
615
(
2011
).
3.
A. D.
Franklin
 et al,
Nano Lett.
12
,
758
(
2012
).
4.
H.
Gao
,
Y.
Kong
, and
D.
Cui
,
Nano Lett.
3
,
471
(
2003
).
5.
E. Y.
Lau
,
F. C.
Lightstone
, and
M. E.
Colvin
,
Chem. Phys. Lett.
412
,
82
(
2005
).
6.
K.
Kostarelos
,
A.
Bianco
, and
M.
Prato
,
Nat. Nanotechnol.
4
,
627
(
2009
).
7.
I.
Canton
and
G.
Battaglia
,
Chem. Soc. Rev.
41
,
2718
(
2012
).
8.
S.
Meng
 et al,
Nano Lett.
7
,
45
(
2007
).
10.
M. C.
Hersam
,
Nat. Nanotechnol.
3
,
387
(
2008
).
11.
X.
Zhao
and
J. K.
Johnson
,
J. Am. Chem. Soc.
129
,
10438
(
2007
).
12.
A. L.
Frischknecht
and
M. G.
Martin
,
J. Phys. Chem. C
112
,
6271
(
2008
).
13.
H.
Gao
and
Y.
Kong
,
Annu. Rev. Mater. Res.
34
,
123
(
2004
).
14.
A. N.
Enyashin
,
S.
Gemming
, and
G.
Seifert
,
Nanotechnology
18
,
245702
(
2007
).
15.
E. L.
Gui
 et al,
J. Am. Chem. Soc.
129
,
14427
(
2007
).
16.
W.
Yang
 et al,
Nanotechnology
18
,
412001
(
2007
).
17.
R. R.
Johnson
,
A. T. C.
Johnson
, and
M. L.
Klein
,
Nano Lett.
8
,
69
(
2008
).
18.
N.
Alegret
 et al,
Chem. Phys. Lett.
525–526
,
120
(
2012
).
19.
M.
Santosh
 et al,
J. Chem. Phys.
136
,
65106
(
2012
).
20.
M.
Iijima
 et al,
Chem. Phys. Lett.
414
,
520
(
2005
).
21.
S.
Ghosh
 et al,
ACS Nano
3
,
2667
(
2009
).
22.
S.
Mogurampelly
and
P. K.
Maiti
,
J. Chem. Phys.
138
,
034901
(
2013
).
23.
J. M.
Vargason
,
K.
Henderson
, and
P. S.
Ho
,
Proc. Natl. Acad. Sci. USA
98
,
7265
(
2001
).
24.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
,
J. Comput. Chem.
21
,
1049
(
2000
).
25.
K.
Lindorff-Larsen
 et al,
Proteins
,
78
,
1950
(
2010
).
26.
A.
Noy
 et al,
Phys. Chem. Chem. Phys.
11
,
10596
(
2009
).
27.
W. L.
Jorgensen
 et al,
J. Chem. Phys.
79
,
926
(
1983
).
28.
I. S.
Joung
and
T. E.
Cheatham
,
J. Phys. Chem. B
112
,
9020
(
2008
).
29.
H. R.
Drew
 et al,
Proc. Natl. Acad. Sci. USA
78
,
2179
(
1981
).
30.
See supplementary material at http://dx.doi.org/10.1063/1.4881422 for Dickerson dodecamer model (Fig. SI1), energetic profiles (Fig. SI2), number density maps of DNA@SWCNT (Fig. SI3), geometrical definition of a nucleobase molecular plane (Fig. SI4), and metadynamics convergence analysis (Fig. SI5).
31.
R. E.
Franklin
and
R. G.
Gosling
,
Nature (London)
171
,
740
(
1953
).
32.
Y.
Wang
,
D. R.
Tree
, and
K. D.
Dorfman
,
Macromolecules
44
,
6594
(
2011
).
33.
K.
Kobayashi
 et al,
Carbon
49
,
5173
(
2011
).
34.
F. J. A. L.
Cruz
,
E. A.
Müller
, and
J. P. B.
Mota
,
RSC Adv.
1
,
270
(
2011
).
35.
F. J. A. L.
Cruz
,
J. J.
de Pablo
, and
J. P. B.
Mota
,
RSC Adv.
4
,
1310
(
2014
).
36.
W. A.
Steele
,
Chem. Rev.
93
,
2355
(
1993
).
37.
B.
Hess
 et al,
J. Chem. Theory Comput.
4
,
435
(
2008
).
38.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
39.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
40.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
41.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
42.
U.
Essmann
 et al,
J. Chem. Phys.
103
,
8577
(
1995
).
43.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
100
,
020603
(
2008
).
44.
A.
Laio
and
F. L.
Gervasio
,
Rep. Prog. Phys.
71
,
126601
(
2008
).
45.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
46.
J.
Kastner
,
Wiley Interdiscip. Rev.:Comput. Mol. Sci.
1
,
932
(
2011
).
47.
B.
Roux
,
Comput. Phys. Commun.
91
,
275
(
1995
).
48.
S.
Kumar
 et al,
J. Comput. Chem.
13
,
1011
(
1992
).
49.
A.
Grossfield
, in WHAM: The Weighted Histogram Analysis Method (
2011
), http://membrane.urmc.rochester.edu/content/wham.
50.
J. D.
Watson
and
F. H. C.
Crick
,
Nature (London)
171
,
737
(
1953
).
52.
Q.
Xue
 et al,
RSC Adv.
2
,
6913
(
2012
).

Supplementary Material

You do not currently have access to this content.