By using developed particle swarm optimization algorithm on crystal structural prediction, we have explored the possible crystal structures of B-C system. Their structures, stability, elastic properties, electronic structure, and chemical bonding have been investigated by first-principles calculations with density functional theory. The results show that all the predicted structures are mechanically and dynamically stable. An analysis of calculated enthalpy with pressure indicates that increasing of boron content will increase the stability of boron carbides under low pressure. Moreover, the boron carbides with rich carbon content become more stable under high pressure. The negative formation energy of predicted B5C indicates its high stability. The density of states of B5C show that it is p-type semiconducting. The calculated theoretical Vickers hardnesses of B-C exceed 40 GPa except B4C, BC, and BC4, indicating they are potential superhard materials. An analysis of Debye temperature and electronic localization function provides further understanding chemical and physical properties of boron carbide.

1.
S.
Veprek
,
J. Vac. Sci. Technol. A
17
,
2401
(
1999
).
2.
N. V.
Novikov
,
S. N.
Dub
, and
V. I.
Mal'nev
,
Sov. J. Superhard Mater. (USRR)
5
,
16
(
1983
).
3.
V. L.
Solozhenko
,
O. O.
Kurahevych
,
D.
Andrault
,
Y. L.
Godec
, and
M.
Mezouar
,
Phys. Rev. Lett.
102
,
015506
(
2009
).
4.
P. V.
Zinin
,
L. C.
Ming
,
H. A.
Ishii
,
R.
Jia
,
T.
Acosta
, and
E.
Hellebrand
,
J. Appl. Phys.
111
,
114905
(
2012
).
5.
M.
Calandra
and
F.
Mauri
,
Phys. Rev. Lett.
101
,
016401
(
2008
).
6.
Y. S.
Yao
,
J. S.
Tse
, and
D. D.
Klug
,
Phys. Rev. B
80
,
094106
(
2009
).
7.
V.
Domnich
,
Y.
Gogotsi
,
M.
Trenary
, and
T.
Tanaka
,
Appl. Phys. Lett.
81
,
3783
(
2002
).
8.
F. L.
Pasquale
and
J. A.
Kelber
,
Appl. Surf. Sci.
258
,
2639
(
2012
).
9.
H.
Werheit
,
J. Phys.: Condens. Matter
18
,
10655
(
2006
)
10.
V. I.
Ivashchenko
and
V. I.
Shevchenko
,
Phys. Rev. B
80
,
235208
(
2009
).
11.
M. M.
Li
,
X.
Fan
, and
W. T.
Zheng
,
J. Phys.: Condens. Matter
25
,
425502
(
2013
).
12.
F.
Mauri
,
N.
Vast
, and
C. J.
Pickard
,
Phys. Rev. Lett.
87
,
085506
(
2001
).
13.
L. F.
Xu
,
Z. S.
Zhao
,
L. M.
Wang
,
B.
Xu
,
J. L.
He
,
Z. Y.
Liu
, and
Y. J.
Tian
,
J. Phys. Chem. C
114
,
22688
22690
(
2010
).
14.
N.
Nakae
,
J.
Ishisada
,
H.
Dekura
, and
K.
Shirai
,
J. Phys.: Conf. Ser.
215
,
012116
(
2010
).
15.
Q.
Li
,
H.
Wang
,
Y. J.
Tian
,
Y.
Xia
,
T.
Cui
,
J. L.
He
,
Y. M.
Ma
, and
G. T.
Zou
,
J. Appl. Phys.
108
,
023507
(
2010
).
16.
H. Y.
Liu
,
Q.
Li
,
L.
Zhu
, and
Y. M.
Ma
,
Phys. Lett. A
375
,
771
774
(
2011
).
17.
A. S.
Mikhaylushkin
,
X.
Zhang
, and
A.
Zunger
,
Phys. Rev. B
87
,
094103
(
2013
).
18.
Y. C.
Wang
,
J.
Lv
, and
Y. M.
Ma
,
Phys. Rev. B
82
,
094116
(
2010
).
19.
J.
Lv
,
Y. C.
Wang
,
L.
Zhu
, and
Y. M.
Ma
,
J. Chem. Phys.
137
,
084104
(
2012
).
20.
Y. C.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y. M.
Ma
,
Comput. Phys. Commun.
183
,
2063
2070
(
2012
).
21.
M.
Hu
,
F.
Tian
,
Z. S.
Zhao
,
Q.
Huang
,
B.
Xu
,
L. M.
Wang
,
H. T.
Wang
,
Y. J.
Tian
, and
J. L.
He
,
J. Phys. Chem. C
116
,
24233
24238
(
2012
).
22.
Z. S.
Zhao
,
F.
Tian
,
X.
Dong
,
Q.
Li
,
Q. Q.
Wang
,
H.
Wang
,
X.
Zhong
,
B.
Xu
,
D. L.
Yu
,
J. L.
He
,
H. T.
Wang
,
Y. M.
Ma
, and
Y. J.
Tian
,
J. Am. Chem. Soc.
134
,
12362
12365
(
2012
).
23.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
24.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
26.
R.
Hill
,
Proc. Phys. Soc. A.
65
,
349
(
1952
).
27.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
28.
Z. J.
Wu
,
E. J.
Zhao
,
H. P.
Xiang
,
X. F.
Hao
,
X. J.
Liu
, and
J.
Meng
,
Phys. Rev. B
76
,
054115
(
2007
).
29.
T.
Rouxel
,
H.
Ji
,
J. P.
Guin
,
F.
Augereau
, and
B.
Rufflé
,
J. Appl. Phys.
107
,
094903
(
2010
).
30.
P.
Ravindran
,
L. P.
Fast
,
B.
Johansson
,
J.
Wills
, and
O.
Eriksson
,
J. Appl. Phys.
84
,
4891
(
1998
).
31.
D. B.
Sirdeshmukh
,
L.
Sirdeshmukh
, and
K. G.
Sirdeshmukh
,
Micro- and Macro-Properties of Solides: Thermal, Mechanical and Dielectric Properties
,
Springer Series in Material Science
Vol.
80
(
Springer
,
2006
), p.
315
.
32.
S. C.
Abrahams
and
F. S. L.
Hsu
,
J. Chem. Phys.
63
,
1162
(
1975
).
33.
X. Q.
Chen
,
H. Y.
Niu
,
D. Z.
Li
, and
Y. Y.
Li
,
Intermetallics
19
,
1275
(
2011
).
34.
X. Q.
Chen
,
H. Y.
Niu
,
C.
Franchini
,
D. Z.
Li
, and
Y. Y.
Li
,
Phy. Rev. B
84
,
121405
(
2011
).
35.
S. F.
Pugh
,
Philos. Mag.
45
,
823
(
1954
).
36.
V.
Domnich
,
Y.
Gogotsi
, and
M.
Trenary
,
Mater. Res. Soc. Symp. Proc.
649
,
Q8
9
1
Q8
9
6
(
2001
).
37.
N. V.
Novikov
and
S. N.
Dub
,
J. Hard Mater.
2
,
3
11
(
1991
).
38.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
5403
(
1990
).
39.
See supplementary material at http://dx.doi.org/10.1063/1.4882071 for the calculated electronic localization function (ELF) for the studied boron carbides.

Supplementary Material

You do not currently have access to this content.