Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran–merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm−1 and 360 cm−1 were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys.140, 224311 (2014)].

1.
D.
Parthenopoulos
and
P.
Rentzepis
,
Science
245
,
843
(
1989
).
2.
D.
Dattilo
,
L.
Armelao
,
G.
Fois
,
G.
Mistura
, and
M.
Maggini
,
Langmuir
23
,
12945
(
2007
).
3.
J.
Andersson
,
S.
Li
,
P.
Lincoln
, and
J.
Andréasson
,
J. Am. Chem. Soc.
130
,
11836
(
2008
).
4.
H.
Dürr
and
H.
Bouas-Laurent
,
Photochromism: Molecules and Systems
(
Elsevier
,
Amsterdam
,
2003
).
5.
J.
Hobley
,
U.
Pfeifer-Fukumura
,
M.
Bletz
,
T.
Asahi
,
H.
Masuhara
, and
H.
Fukumura
,
J. Phys. Chem. A
106
,
2265
(
2002
).
6.
B. C.
Bunker
,
B. I.
Kim
,
J. E.
Houston
,
R.
Rosario
,
A. A.
Garcia
,
M.
Hayes
,
D.
Gust
, and
S. T.
Picraux
,
Nano Lett.
3
,
1723
(
2003
).
7.
J.
Buback
,
M.
Kullmann
,
F.
Langhojer
,
P.
Nuernberger
,
R.
Schmidt
,
F.
Würthner
, and
T.
Brixner
,
J. Am. Chem. Soc.
132
,
16510
(
2010
).
8.
J.
Buback
,
P.
Nuernberger
,
M.
Kullmann
,
F.
Langhojer
,
R.
Schmidt
,
F.
Würthner
, and
T.
Brixner
,
J. Phys. Chem. A
115
,
3924
(
2011
).
9.
J.
Kohl-Landgraf
,
M.
Braun
,
C.
Özçoban
,
D. P. N.
Gonçalves
,
A.
Heckel
, and
J.
Wachtveitl
,
J. Am. Chem. Soc.
134
,
14070
(
2012
).
10.
C.
Lenoble
and
R. S.
Becker
,
J. Phys. Chem.
90
,
62
(
1986
).
11.
T.
Yuzawa
,
A.
Shimojima
, and
H.
Takahashi
,
J. Mol. Struct.
352-353
,
497
(
1995
).
12.
R.
Kießwetter
,
N.
Pustet
,
F.
Brandl
, and
A.
Mannschreck
,
Tetrahedron: Asymmetry
10
,
4677
(
1999
).
13.
A.
Gahlmann
,
I.
Lee
, and
A. H.
Zewail
,
Angew. Chem.: Int. Ed.
49
,
6524
(
2010
).
14.
Y.
Shiraishi
,
M.
Itoh
, and
T.
Hirai
,
Phys. Chem. Chem. Phys.
12
,
13737
(
2010
).
15.
J.
Whelan
,
D.
Abdallah
,
K.
Piskorz
,
J. T. C.
Wojtyk
,
J. M.
Dust
,
J.
Nunzi
,
S.
Hoz
, and
E.
Buncel
,
Phys. Chem. Chem. Phys.
14
,
13684
(
2012
).
16.
G.
Cottone
,
R.
Noto
,
G. L.
Manna
, and
S. L.
Fornili
,
Chem. Phys. Lett.
319
,
51
(
2000
).
17.
Y.
Futami
,
M. L. S.
Chin
,
S.
Kudoh
,
M.
Takayanagi
, and
M.
Nakata
,
Chem. Phys. Lett.
370
,
460
(
2003
).
18.
G.
Cottone
,
R.
Noto
, and
G. L.
Manna
,
Chem. Phys. Lett.
388
,
218
(
2004
).
19.
Y.
Sheng
,
J.
Leszczynski
,
A. A.
Garcia
,
R.
Rosario
,
D.
Gust
, and
J.
Springer
,
J. Phys. Chem. B
108
,
16233
(
2004
).
20.
N.
Ernsting
and
T.
Arthen-Engeland
,
J. Phys. Chem.
95
,
5502
(
1991
).
21.
A.
Holm
,
M.
Rini
,
E. T. J.
Nibbering
, and
H.
Fidder
,
Chem. Phys. Lett.
376
,
214
(
2003
).
22.
A.
Holm
,
O. F.
Mohammed
,
M.
Rini
,
E.
Mukhtar
,
E. T. J.
Nibbering
, and
H.
Fidder
,
J. Phys. Chem. A
109
,
8962
(
2005
).
23.
M.
Kullmann
,
S.
Ruetzel
,
J.
Buback
,
P.
Nuernberger
, and
T.
Brixner
,
J. Am. Chem. Soc.
133
,
13074
(
2011
).
24.
S.
Ruetzel
,
M.
Kullmann
,
J.
Buback
,
P.
Nuernberger
, and
T.
Brixner
,
Phys. Rev. Lett.
110
,
148305
(
2013
).
25.
A. K.
Chibisov
and
H.
Görner
,
J. Phys. Chem. A
101
,
4305
(
1997
).
26.
Y.
Shiraishi
,
K.
Yamamoto
,
S.
Sumiya
, and
T.
Hirai
,
Phys. Chem. Chem. Phys.
16
,
12137
(
2014
).
27.
C. J.
Wohl
and
D.
Kuciauskas
,
J. Phys. Chem. B
109
,
22186
(
2005
).
28.
C.
Walter
,
S.
Ruetzel
,
M.
Diekmann
,
P.
Nuernberger
,
T.
Brixner
, and
B.
Engels
,
J. Chem. Phys.
140
,
224311
(
2014
).
29.
I.
Amat-Roldán
,
I.
Cormack
,
P.
Loza-Alvarez
,
E.
Gualda
, and
D.
Artigas
,
Opt. Express
12
,
1169
(
2004
).
30.
A.
Galler
and
T.
Feurer
,
Appl. Phys. B
90
,
427
(
2008
).
31.
I. H. M.
van Stokkum
,
D. S.
Larsen
, and
R.
van Grondelle
,
Biochim. Biophys. Acta, Bioenerg.
1657
,
82
(
2004
).
32.
J. J.
Snellenburg
,
S. P.
Laptenok
,
R.
Seger
,
K. M.
Mullen
, and
I. H. M.
van Stokkum
,
J. Stat. Software
49
(
3
),
1
(
2012
), available online at http://www.jstatsoft.org/v49/i03.
33.
K. M.
Mullen
and
I. H. M.
van Stokkum
,
J. Stat. Software
18
(
3
),
1
(
2007
), available online at http://www.jstatsoft.org/v18/i03.
34.
K.
Ekvall
,
P.
van der Meulen
,
C.
Dhollande
,
L.
Berg
,
S.
Pommeret
,
R.
Naskrecki
, and
J.
Mialocq
,
J. Appl. Phys.
87
,
2340
(
2000
).
35.
M.
Rasmusson
,
A. N.
Tarnovsky
,
E.
Åkesson
, and
V.
Sundström
,
Chem. Phys. Lett.
335
,
201
(
2001
).
36.
B.
Dietzek
,
T.
Pascher
,
V.
Sundström
, and
A.
Yartsev
,
Laser Phys. Lett.
4
,
38
(
2007
).
37.
U.
Megerle
,
I.
Pugliesi
,
C.
Schriever
,
C.
Sailer
, and
E.
Riedle
,
Appl. Phys. B
96
,
215
(
2009
).
38.
H.
Görner
,
Phys. Chem. Chem. Phys.
3
,
416
(
2001
).
39.
M. L.
Horng
,
J. A.
Gardecki
,
A.
Papazyan
, and
M.
Maroncelli
,
J. Phys. Chem.
99
,
17311
(
1995
).
40.
M. H.
Vos
,
F.
Rappaport
,
J.-C.
Lambry
,
J.
Breton
, and
J.-L.
Martin
,
Nature (London)
363
,
320
(
1993
).
41.
Q.
Wang
,
R. W.
Schoenlein
,
L. A.
Peteanu
,
R. A.
Mathies
, and
C. V.
Shank
,
Science
266
,
422
(
1994
).
42.
R.
Schoenlein
,
L.
Peteanu
,
R. A.
Mathies
, and
C. V.
Shank
,
Science
254
,
412
(
1991
).
43.
D.
Polli
,
P.
Altoe
,
O.
Weingart
,
K. M.
Spillane
,
C.
Manzoni
,
D.
Brida
,
G.
Tomasello
,
G.
Orlandi
,
P.
Kukura
,
R. A.
Mathies
,
M.
Garavelli
, and
G.
Cerullo
,
Nature (London)
467
,
440
(
2010
).
44.
U.
Åberg
,
E.
Åkesson
, and
V.
Sundström
,
Chem. Phys. Lett.
215
,
388
(
1993
).
45.
Q.
Xu
and
G. R.
Fleming
,
J. Phys. Chem. A
105
,
10187
(
2001
).
46.
P.
Nuernberger
,
G.
Vogt
,
G.
Gerber
,
R.
Improta
, and
F.
Santoro
,
J. Chem. Phys.
125
,
044512
(
2006
).
47.
G.
Vogt
,
P.
Nuernberger
,
G.
Gerber
,
R.
Improta
, and
F.
Santoro
,
J. Chem. Phys.
125
,
044513
(
2006
).
48.
B.
Dietzek
,
A.
Yartsev
, and
A. N.
Tarnovsky
,
J. Phys. Chem. B
111
,
4520
(
2007
).
49.
B. G.
Levine
and
T. J.
Martínez
,
Annu. Rev. Phys. Chem.
58
,
613
(
2007
).
50.
J.
Briand
,
O.
Bräm
,
J.
Réhault
,
J.
Léonard
,
A.
Cannizzo
,
M.
Chergui
,
V.
Zanirato
,
M.
Olivucci
,
J.
Helbing
, and
S.
Haacke
,
Phys. Chem. Chem. Phys.
12
,
3178
(
2010
).
51.
A.
Weigel
,
M.
Pfaffe
,
M.
Sajadi
,
R.
Mahrwald
,
R.
Improta
,
V.
Barone
,
D.
Polli
,
G.
Cerullo
,
N. P.
Ernsting
, and
F.
Santoro
,
Phys. Chem. Chem. Phys.
14
,
13350
(
2012
).
52.
J.
Dasgupta
,
R. R.
Frontiera
,
K. C.
Taylor
,
J. C.
Lagarias
, and
R. A.
Mathies
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
1784
(
2009
).
53.
M.
Seel
,
S.
Engleitner
, and
W.
Zinth
,
Chem. Phys. Lett.
275
,
363
(
1997
).
54.
C. J.
Bardeen
,
Q.
Wang
, and
C. V.
Shank
,
J. Phys. Chem. A
102
,
2759
(
1998
).
55.
K.
Horikoshi
,
K.
Misawa
, and
R.
Lang
,
J. Chem. Phys.
127
,
054104
(
2007
).
56.
T. J.
Dunn
,
J. N.
Sweetser
,
I. A.
Walmsley
, and
C.
Radzewicz
,
Phys. Rev. Lett.
70
,
3388
(
1993
).
57.
R. S. S.
Kumar
,
L.
Lüer
,
D.
Polli
,
M.
Garbugli
, and
G.
Lanzani
,
Opt. Mater. Express
1
,
293
(
2011
).
58.
S.
Ruetzel
,
M.
Diekmann
,
P.
Nuernberger
,
C.
Walter
,
B.
Engels
, and
T.
Brixner
,
Proc. Natl. Acad. Sci. U.S.A.
111
,
4764
(
2014
).
59.
S.
Pedersen
,
L.
Bañares
, and
A. H.
Zewail
,
J. Chem. Phys.
97
,
8801
(
1992
).
60.
S. L.
Dexheimer
,
Q.
Wang
,
L. A.
Peteanu
,
W. T.
Pollard
,
R. A.
Mathies
, and
C. V.
Shank
,
Chem. Phys. Lett.
188
,
61
(
1992
).
61.
T.
Nägele
,
R.
Hoche
,
W.
Zinth
, and
J.
Wachtveitl
,
Chem. Phys. Lett.
272
,
489
(
1997
).
62.
T.
Kobayashi
,
T.
Saito
, and
H.
Ohtani
,
Nature (London)
414
,
531
(
2001
).
63.
K.
Heyne
,
J.
Herbst
,
D.
Stehlik
,
B.
Esteban
,
T.
Lamparter
,
J.
Hughes
, and
R.
Diller
,
Biophys. J.
82
,
1004
(
2002
).
64.
N.
Mataga
,
H.
Chosrowjan
,
Y.
Shibata
,
Y.
Imamoto
,
M.
Kataoka
, and
F.
Tokunaga
,
Chem. Phys. Lett.
352
,
220
(
2002
).
65.
S.
Takeuchi
,
S.
Ruhman
,
T.
Tsuneda
,
M.
Chiba
,
T.
Taketsugu
, and
T.
Tahara
,
Science
322
,
1073
(
2008
).
66.
J.
Conyard
,
K.
Addison
,
I. A.
Heisler
,
A.
Cnossen
,
W. R.
Browne
,
B. L.
Feringa
, and
S. R.
Meech
,
Nat. Chem.
4
,
547
(
2012
).
You do not currently have access to this content.