Our recently developed QQR-type integral screening is introduced in our Cholesky-decomposed pseudo-densities Møller-Plesset perturbation theory of second order (CDD-MP2) method. We use the resolution-of-the-identity (RI) approximation in combination with efficient integral transformations employing sparse matrix multiplications. The RI-CDD-MP2 method shows an asymptotic cubic scaling behavior with system size and a small prefactor that results in an early crossover to conventional methods for both small and large basis sets. We also explore the use of local fitting approximations which allow to further reduce the scaling behavior for very large systems. The reliability of our method is demonstrated on test sets for interaction and reaction energies of medium sized systems and on a diverse selection from our own benchmark set for total energies of larger systems. Timings on DNA systems show that fast calculations for systems with more than 500 atoms are feasible using a single processor core. Parallelization extends the range of accessible system sizes on one computing node with multiple cores to more than 1000 atoms in a double-zeta basis and more than 500 atoms in a triple-zeta basis.

1.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
2.
D.
Cremer
,
WIREs Comput. Mol. Sci.
1
,
509
(
2011
).
3.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1994
).
4.
S.
Grimme
,
WIREs Comput. Mol. Sci.
1
,
211
(
2011
).
5.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
6.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
7.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
8.
H.
Koch
,
A.
Sánchez de Merás
, and
T. B.
Pedersen
,
J. Chem. Phys.
118
,
9481
(
2003
).
9.
J.
Boström
,
M.
Pitoák
,
F.
Aquilante
,
P.
Neogrády
,
T. B.
Pedersen
, and
R.
Lindh
,
J. Chem. Theory Comput.
8
,
1921
(
2012
).
10.
T. J.
Martinez
and
E. A.
Carter
,
J. Chem. Phys.
100
,
3631
(
1994
).
11.
E. G.
Hohenstein
,
R. M.
Parrish
, and
T. J.
Martínez
,
J. Chem. Phys.
137
,
044103
(
2012
).
12.
13.
P.
Pulay
and
S.
Saebø
,
Theor. Chim. Acta
69
,
357
(
1986
).
14.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
,
J. Chem. Phys.
111
,
5691
(
1999
).
15.
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
J. Chem. Phys.
118
,
8149
(
2003
).
16.
K.
Kristensen
,
I.-M.
Høyvik
,
B.
Jansík
,
P.
Jørgensen
,
T.
Kjærgaard
,
S.
Reine
, and
J.
Jakowski
,
Phys. Chem. Chem. Phys.
14
,
15706
(
2012
).
17.
J.
Almlöf
,
Chem. Phys. Lett.
181
,
319
(
1991
).
18.
M.
Häser
and
J.
Almlöf
,
J. Chem. Phys.
96
,
489
(
1992
).
19.
M.
Häser
,
Theor. Chim. Acta
87
,
147
(
1993
).
20.
P. Y.
Ayala
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
3660
(
1999
).
21.
D. S.
Lambrecht
,
B.
Doser
, and
C.
Ochsenfeld
,
J. Chem. Phys.
123
,
184102
(
2005
).
22.
D. S.
Lambrecht
,
B.
Doser
, and
C.
Ochsenfeld
,
J. Chem. Phys.
136
,
149902
(
2012
).
23.
B.
Doser
,
D. S.
Lambrecht
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Phys.
130
,
064107
(
2009
).
24.
S. A.
Maurer
,
D. S.
Lambrecht
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Phys.
138
,
014101
(
2013
).
25.
S. A.
Maurer
,
D. S.
Lambrecht
,
D.
Flaig
, and
C.
Ochsenfeld
,
J. Chem. Phys.
136
,
144107
(
2012
).
26.
S.
Schweizer
,
B.
Doser
, and
C.
Ochsenfeld
,
J. Chem. Phys.
128
,
154101
(
2008
).
27.
M.
Maurer
and
C.
Ochsenfeld
,
J. Chem. Phys.
138
,
174104
(
2013
).
28.
S. A.
Maurer
,
M.
Beer
,
D. S.
Lambrecht
, and
C.
Ochsenfeld
,
J. Chem. Phys.
139
,
184104
(
2013
).
29.
D. S.
Hollman
,
J. J.
Wilke
, and
H. F.
Schaefer
,
J. Chem. Phys.
138
,
064107
(
2013
).
30.
W.
Klopper
,
F. R.
Manby
,
S.
Ten-No
, and
E. F.
Valeev
,
Int. Rev. Phys. Chem.
25
,
427
(
2006
).
31.
J.
Zienau
,
L.
Clin
,
B.
Doser
, and
C.
Ochsenfeld
,
J. Chem. Phys.
130
,
204112
(
2009
).
32.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
33.
C.
Riplinger
and
F.
Neese
,
J. Chem. Phys.
138
,
034106
(
2013
).
34.
N. J.
Higham
,
WIREs Comput. Stat.
1
,
251
(
2009
).
35.
H.
Harbrecht
,
M.
Peters
, and
R.
Schneider
,
Appl. Num. Math.
62
,
428
(
2012
).
36.
F.
Aquilante
,
T. B.
Pedersen
,
A.
Sánchez de Merás
, and
H.
Koch
,
J. Chem. Phys.
125
,
174101
(
2006
).
37.
F. G.
Gustavson
,
ACM Trans. Math. Soft.
4
,
250
(
1978
).
38.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
127
,
054103
(
2007
).
39.
J.
Kussmann
and
C.
Ochsenfeld
,
J. Chem. Phys.
138
,
134114
(
2013
).
40.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
41.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
42.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
43.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
44.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
45.
E.
Cuthill
and
J.
McKee
, in
Proceedings of the 1969 24th National Conference
(
ACM
,
New York
,
1969
), pp.
157
172
.
46.
J.
George
,
Computer Implementation of the Finite Element Method
,
Technical Report STAN-CS-71-208
(
Stanford University
,
Stanford, CA
,
1971
.
47.
See http://www.cup.uni-muenchen.de/pc/ochsenfeld/download.html for structure files are available.
48.
B.
Jansík
,
S.
Høst
,
K.
Kristensen
, and
P.
Jørgensen
,
J. Chem. Phys.
134
,
194104
(
2011
).
49.
I.-M.
Høyvik
,
B.
Jansík
, and
P.
Jørgensen
,
J. Chem. Theory Comput.
8
,
3137
(
2012
).
50.
I. N.
Bronstein
,
K. A.
Semendjajew
,
G.
Musiol
, and
H.
Mühlig
,
Taschenbuch der Mathematik
, 7th ed. (
Verlag Harri Deutsch GmbH
,
Frankfurt am Main
,
2008
).
You do not currently have access to this content.