Electrokinetic flows of an aqueous NaCl solution in nanochannels with negatively charged surfaces are studied using molecular dynamics simulations. The four transport coefficients that characterize the response to weak electric and pressure fields, namely, the coefficients for the electrical current in response to the electric field (Mjj) and the pressure field (Mjm), and those for the mass flow in response to the same fields (Mmj and Mmm), are obtained in the linear regime using a Green–Kubo approach. Nonequilibrium simulations with explicit external fields are also carried out, and the current and mass flows are directly obtained. The two methods exhibit good agreement even for large external field strengths, and Onsager's reciprocal relation (Mjm = Mmj) is numerically confirmed in both approaches. The influence of the surface charge density on the flow is also considered. The values of the transport coefficients are found to be smaller for larger surface charge density, because the counter-ions strongly bound near the channel surface interfere with the charge and mass flows. A reversal of the streaming current and of the reciprocal electro-osmotic flow, with a change of sign of Mmj due to the excess co-ions, takes places for very high surface charge density.

1.
B.
Scrosati
and
J.
Garche
, “
Lithium batteries: Status, prospects and future
,”
J. Power Sour.
195
,
2419
2430
(
2010
).
2.
S. J.
Peighambardoust
,
S.
Rowshanzamir
, and
M.
Amjadi
, “
Review of the proton exchange membranes for fuel cell applications
,”
Int. J. Hydrogen Energy
35
,
9349
9384
(
2010
).
3.
E.
Kjeang
,
N.
Djilali
, and
D.
Sinton
, “
Microfluidic fuel cells: A review
,”
J. Power Sour.
186
,
353
369
(
2009
).
4.
A.
Siria
,
P.
Poncharal
,
A.-L.
Biance
,
R.
Fulcrand
,
X.
Blase
,
S. T.
Purcell
, and
L.
Bocquet
, “
Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube
,”
Nature (London)
494
,
455
458
(
2013
).
5.
N.
Baba
,
H.
Yoshida
,
M.
Nagaoka
,
C.
Okuda
, and
S.
Kawauchi
, “
Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model
,”
J. Power Sour.
252
,
214
228
(
2014
).
6.
J.
Newman
,
Electrochemical Systems
, 2nd ed. (
Prentice-Hall
,
Englewood Cliffs, NJ
,
1991
).
7.
E.
Brunet
and
A.
Ajdari
, “
Generalized Onsager relations for electrokinetic effects in anisotropic and heterogeneous geometries
,”
Phys. Rev. E
69
,
016306
(
2004
).
8.
The flux of one ion component (cation or anion) is another important response of the present system, and then the corresponding external field is the chemical potential gradient of that component; although in the present paper we restrict ourselves to investigating two fluxes, i.e., the current and mass flow, to cover the transport coefficients of 3 × 3 matrix is a possible extension of this work.
9.
J.
Bear
,
Dynamics of Fluids in Porous Media
(
Dover Publications
,
1988
).
10.
L.
Onsager
, “
Reciprocal relations in irreversible processes. 1
Phys. Rev.
37
,
405
426
(
1931
);
L.
Onsager
,
Phys. Rev.
38
,
2265
2279
(
1931
).
11.
S. R.
De Groot
and
P.
Mazur
,
Non-Equilibrium Thermodynamics
(
North-Holland
,
Amsterdam
,
1962
) (republished by Dover, New York, 1984).
12.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 3rd ed. (
Academic Press
,
2006
).
13.
L.
Bocquet
and
E.
Charlaix
, “
Nanofluidics, from bulk to interfaces
,”
Chem. Soc. Rev.
39
,
1073
1095
(
2010
).
14.
J. R.
Looker
and
S. L.
Carnie
, “
Homogenization of the ionic transport equations in periodic porous media
,”
Transp. Porous Media
65
,
107
131
(
2006
).
15.
G.
Allaire
,
R.
Brizzi
,
J.-F.
Dufrêche
,
A.
Mikelić
, and
A.
Piatnitski
, “
Ion transport in porous media: Derivation of the macroscopic equations using upscaling and properties of the effective coefficients
,”
Comput. Geosci.
17
,
479
495
(
2013
).
16.
A.
Obliger
,
M.
Duvail
,
M.
Jardat
,
D.
Coelho
,
S.
Békri
, and
B.
Rotenberg
, “
Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations
,”
Phys. Rev. E
88
,
013019
(
2013
).
17.
G.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows
(
Springer
,
2005
).
18.
Z.
Zheng
,
D. J.
Hansford
, and
A. T.
Conlisk
, “
Effect of multivalent ions on electroosmotic flow in micro- and nanochannels
,”
Electrophoresis
24
,
3006
3017
(
2003
).
19.
B.
Rotenberg
and
I.
Pagonabarraga
, “
Electrokinetics: Insights from simulation on the microscopic scale
,”
Mol. Phys.
111
,
827
842
(
2013
).
20.
L.
Bocquet
and
J.-L.
Barrat
, “
Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids
,”
Phys. Rev. E
49
,
3079
3092
(
1994
).
21.
V.
Marry
,
J.-F.
Dufrêche
,
M.
Jardat
, and
P.
Turq
, “
Equilibrium and electrokinetic phenomena in charged porous media from microscopic and mesoscopic models: Electro-osmosis in montmorillonite
,”
Mol. Phys.
101
,
3111
3119
(
2003
).
22.
L.
Bocquet
and
J.-L.
Barrat
, “
On the Green–Kubo relationship for the liquid-solid friction coefficient
,”
J. Chem. Phys.
139
,
044704
(
2013
).
23.
I. F.
Macdonald
,
M. S.
El-Sayed
,
K.
Mow
, and
F. A. L.
Dullien
, “
Flow through porous media—The Ergun equation revisited
,”
Ind. Eng. Chem. Fundamen.
18
,
199
208
(
1979
).
24.
R.
Sadr
,
M.
Yoda
,
Z.
Zheng
, and
A. T.
Conlisk
, “
An experimental study of electro-osmotic flow in rectangular microchannels
,”
J. Fluid Mech.
506
,
357
367
(
2004
).
25.
D. J.
Evans
and
G.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
, 2nd ed. (
Cambridge University Press
,
2008
).
26.
S.
Bernardi
,
S. J.
Brookes
,
D. J.
Searles
, and
D. J.
Evans
, “
Response theory for confined systems
,”
J. Chem. Phys.
137
,
074114
(
2012
).
27.
R.
Qiao
and
N. R.
Aluru
, “
Charge inversion and flow reversal in a nanochannel electro-osmotic flow
,”
Phys. Rev. Lett.
92
,
198301
(
2004
).
28.
D. M.
Huang
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
, “
Aqueous electrolytes near hydrophobic surfaces: Dynamic effects of ion specificity and hydrodynamic slip
,”
Langmuir
24
,
1442
1450
(
2008
).
29.
D. M.
Huang
,
C.
Cottin-Bizonne
,
C.
Ybert
, and
L.
Bocquet
, “
Massive amplification of surface-induced transport at superhydrophobic surfaces
,”
Phys. Rev. Lett.
101
,
064503
(
2008
).
30.
J.
Liu
,
M.
Wang
,
S.
Chen
, and
M. O.
Robbins
, “
Molecular simulations of electroosmotic flows in rough nanochannels
,”
J. Comput. Phys.
229
,
7834
7847
(
2010
).
31.
A.
Botan
,
V.
Marry
,
B.
Rotenberg
,
P.
Turq
, and
B.
Noetinger
, “
How electrostatics influences hydrodynamic boundary conditions: Poiseuille and electro-osmostic flows in clay nanopores
,”
J. Phys. Chem. C
117
,
978
985
(
2013
);
A.
Botan
,
V.
Marry
,
B.
Rotenberg
,
P.
Turq
, and
B.
Noetinger
,
J. Phys. Chem. C
117
,
20376
(
2013
) (Erratum).
32.
H.
Washizu
and
K.
Kikuchi
, “
Electrical polarizability of polyelectrolytes in salt-free aqueous solution
,”
J. Phys. Chem. B
106
,
11329
11342
(
2002
).
33.
G. S.
Manning
, “
Counterion condensation theory of attraction between like charges in the absence of multivalent counterions
,”
Eur. Phys. J. E
34
,
132
(
2011
).
34.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
35.
D. E.
Smith
and
L. X.
Dang
, “
Computer simulations of NaCl association in polarizable water
,”
J. Chem. Phys.
100
,
3757
3766
(
1994
).
36.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1989
).
37.
A.
Pertsin
and
M.
Grunze
, “
A computer simulation study of stick-slip transitions in water films confined between model hydrophilic surfaces. 1. Monolayer films
,”
Langmuir
24
,
135
141
(
2008
).
38.
B.
Siboulet
,
J.
Molina
,
B.
Coasne
,
P.
Turq
, and
J.-F.
Dufrêche
, “
Water self-diffusion at the surface of silica glasses: Effect of hydrophilic to hydrophobic transition
,”
Mol. Phys.
111
,
3410
3417
(
2013
).
39.
See http://lammps.sandia.gov for the code.
40.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
41.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
, “
Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
,”
J. Comput. Phys.
23
,
327
341
(
1977
).
42.
I.-C.
Yeh
and
M. L.
Berkowitz
, “
Ewald summation for systems with slab geometry
,”
J. Chem. Phys.
111
,
3155
3162
(
1999
).
43.
A. P.
Lyubartsev
and
A.
Laaksonen
, “
Concentration effects in aqueous NaCl solutions: A molecular dynamics simulation
,”
J. Phys. Chem.
100
,
16410
16418
(
1996
).
44.
D.
Chandler
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
,
1987
).
45.
H.
Yoshida
,
T.
Kinjo
, and
H.
Washizu
, “
Coupled lattice Boltzmann method for simulating electrokinetic flows: A localized scheme for the Nernst–Plank model
,”
Commun. Nonlinear Sci. Numer. Simulat.
19
,
3570
3590
(
2014
).
46.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
, “
Flexible simple point-charge water model with improved liquid-state properties
,”
J. Chem. Phys.
124
,
024503
(
2006
).
47.
D. J.
Bonthuis
and
R. R.
Netz
, “
Unraveling the combined effects of dielectric and viscosity profiles on surface capacitance, electro-osmotic mobility, and electric surface conductivity
,”
Langmuir
28
,
16049
16059
(
2012
).
48.
R. R.
Netz
, “
Electrofriction and dynamic Stern layers at planar charged surfaces
,”
Phys. Rev. Lett.
91
,
138101
(
2003
).
49.
H.
Washizu
and
K.
Kikuchi
, “
Electric polarizability of DNA in aqueous salt solution
,”
J. Phys. Chem. B
110
,
2855
2861
(
2006
).
50.
G. S.
Manning
, “
The interaction between a charged wall and its counterions: A condensation theory
,”
J. Phys. Chem. B
114
,
5435
5440
(
2010
).
51.
Note that according to Ref. 13 Donnan effects could appear as soon as the channel width becomes comparable to the Dukhin length σ/FC0; in our case this length is indeed comparable to the width for the highest charge densities, which highlights the importance of considering the possibility of a reduction in free salt concentration.
52.
H.
Mizuno
and
R.
Yamamoto
, “
Mechanical responses and stress fluctuations of a supercooled liquid in a sheared non-equilibrium state
,”
Eur. Phys. J. E
35
,
29
(
2012
).
53.
T.
Chen
,
B.
Smit
, and
A. T.
Bell
, “
Are pressure fluctuation-based equilibrium methods really worse than nonequilibrium methods for calculating viscosities?
J. Chem. Phys.
131
,
246101
(
2009
).
You do not currently have access to this content.