Quantum computers attract much attention as they promise to outperform their classical counterparts in solving certain type of problems. One of them with practical applications in quantum chemistry is simulation of complex quantum systems. An essential ingredient of efficient quantum simulation algorithms are initial guesses of the exact wave functions with high enough fidelity. As was proposed in Aspuru-Guzik et al [Science309, 1704 (2005)], the exact ground states can in principle be prepared by the adiabatic state preparation method. Here, we apply this approach to preparation of the lowest lying multireference singlet electronic state of methylene and numerically investigate preparation of this state at different molecular geometries. We then propose modifications that lead to speeding up the preparation process. Finally, we decompose the minimal adiabatic state preparation employing the direct mapping in terms of two-qubit interactions.

1.
The only exception is the most stretched geometry (r/r0 = 3.0) where the minimum is not exactly at s = 1, but close to it. However, the energy difference between ΔEmin and ΔE(s = 1) is minor.
2.
P. W.
Shor
, “
Algorithms for quantum computation: Discrete logarithms and factoring
,” in
Proceedings of 35th IEEE Symposium on Foundations of Computer Science
(
IEEE Press
,
1994
), pp.
124
134
.
3.
L. K.
Grover
,
Phys. Rev. Lett.
79
,
325
(
1997
).
4.
R. P.
Feynman
,
Int. J. Theor. Phys.
21
,
467
(
1982
).
5.
Yu. I.
Manin
, Vychislimoe i nevychislimoe [Computable and Noncomputable] (Sov. Radio., Moscow,
1980
), pp.
13
15
(in Russian).
7.
C.
Zalka
,
Proc. R. Soc. London, Ser. A
454
,
313
(
1998
).
8.
G.
Ortiz
,
J. E.
Gubernatis
,
E.
Knill
, and
R.
Laflamme
,
Phys. Rev. A
64
,
022319
(
2001
).
9.
R.
Somma
,
G.
Ortiz
,
J. E.
Gubernatis
,
E.
Knill
, and
R.
Laflamme
,
Phys. Rev. A
65
,
042323
(
2002
).
10.
D. S.
Abrams
and
S.
Lloyd
,
Phys. Rev. Lett.
79
,
2586
(
1997
).
11.
D. S.
Abrams
and
S.
Lloyd
,
Phys. Rev. Lett.
83
,
5162
(
1999
).
12.
E.
Ovrum
and
M.
Hjorth-Jensen
, “
Quantum computation algorithm for many-body studies
,” preprint arXiv:0705.1928v1 [quant-ph] (
2007
).
13.
I.
Kassal
,
J. D.
Whitfield
,
A.
Perdomo-Ortiz
,
M. H.
Yung
, and
A.
Aspuru-Guzik
,
Annu. Rev. Phys. Chem.
62
,
185
(
2011
).
14.
M.-H.
Yung
,
J. D.
Whitfield
,
S.
Boixo
,
D. G.
Tempel
, and
A.
Aspuru-Guzik
,
Adv. Chem. Phys.
154
,
67
(published online,
2014
).
15.
L.
Veis
and
J.
Pittner
,
Adv. Chem. Phys.
154
,
107
(published online,
2014
).
16.
D. A.
Lidar
and
H.
Wang
,
Phys. Rev. E
59
,
2429
(
1999
).
17.
A.
Aspuru-Guzik
,
A. D.
Dutoi
,
P. J.
Love
, and
M.
Head-Gordon
,
Science
309
,
1704
(
2005
).
18.
H.
Wang
,
S.
Kais
,
A.
Aspuru-Guzik
, and
M. R.
Hoffmann
,
Phys. Chem. Chem. Phys.
10
,
5388
(
2008
).
19.
I.
Kassal
,
S. P.
Jordan
,
P. J.
Love
,
M.
Mohseni
, and
A.
Aspuru-Guzik
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
18681
(
2008
).
20.
I.
Kassal
and
A.
Aspuru-Guzik
,
J. Chem. Phys.
131
,
224102
(
2009
).
21.
L.
Veis
 et al,
Phys. Rev. A
85
,
030304
(
2012
).
22.
A.
Perdomo
,
C.
Truncik
,
I.
Tubert-Brohman
,
G.
Rose
, and
A.
Aspuru-Guzik
,
Phys. Rev. A
78
,
012320
(
2008
).
23.
A.
Perdomo-Ortiz
,
N.
Dickson
,
M.
Drew-Brook
,
G.
Rose
, and
A.
Aspuru-Guzik
,
Sci. Rep.
2
,
571
(
2012
).
24.
D.
Wecker
,
B.
Bauer
,
B. K.
Clark
,
M. B.
Hastings
, and
M.
Troyer
, “
Can quantum chemistry be performed on a small quantum computer?
,” preprint arXiv:1312.1695v2 [quant-ph] (
2014
).
25.
P. W.
Shor
,
SIAM J. Comput.
26
,
1484
(
1997
).
26.
B. P.
Lanyon
 et al,
Nat. Chem.
2
,
106
(
2010
).
27.
J.
Du
 et al,
Phys. Rev. Lett.
104
,
030502
(
2010
).
28.
29.
D.
Lu
 et al,
Phys. Rev. Lett.
107
,
020501
(
2011
).
30.
B. P.
Lanyon
 et al,
Science
334
,
57
(
2011
).
31.
A.
Peruzzo
 et al, “
A variational eigenvalue solver on a quantum processor
,” preprint arXiv:1304.3061v1 [quant-ph] (
2013
).
32.
N. C.
Jones
 et al,
New J. Phys.
14
,
115023
(
2012
).
33.
A.
Daskin
,
A.
Grama
,
G.
Kollias
, and
S.
Kais
,
J. Chem. Phys.
137
,
234112
(
2012
).
34.
J. D.
Whitfield
,
J.
Biamonte
, and
A.
Aspuru-Guzik
,
Mol. Phys.
109
,
735
(
2011
).
35.
L.
Veis
and
J.
Pittner
,
J. Chem. Phys.
133
,
194106
(
2010
).
36.
J.-S.
Xu
 et al,
Nature Photonics
8
,
113
(
2014
).
37.
M.-H.
Yung
 et al,
Sci. Rep.
4
,
3589
(
2013
).
38.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambridge University Press
,
2000
).
39.
J. D.
Biamonte
,
V.
Bergholm
,
J. D.
Whitfield
,
J.
Fitzsimons
, and
A.
Aspuru-Guzik
,
AIP Adv.
1
,
022126
(
2011
).
40.
E.
Farhi
,
J.
Goldstone
,
S.
Gutmann
, and
M.
Sipser
, “
Quantum computation by adiabatic evolution
,” preprint arXiv:quant-ph/0001106v1 (
2000
).
41.
E.
Farhi
,
J.
Goldstone
, and
S.
Gutmann
, “
A numerical study of the performance of a quantum adiabatic evolution algorithm for satisfiability
,” preprint arXiv:quant-ph/0007071 (
2000
).
42.
43.
A.
Messiah
,
Quantum Mechanics
(
Wiley
,
New York
,
1976
), Vol.
2
.
44.
D.
Aharonov
 et al, in
Proceedings of the 45th Annual Symposium on the Foundations of Computer Science
(
IEEE Press
,
Los Alamitos
,
2004
), p.
42
.
45.
J.
Kempe
,
A.
Kitaev
, and
O.
Regev
,
SIAM J. Comput.
35
,
1070
(
2006
).
46.
A.
Mizel
,
D. A.
Lidar
, and
M.
Mitchell
,
Phys. Rev. Lett.
99
,
070502
(
2007
).
47.
Introduction to Quantum Information and Computation for Chemistry
,”
Adv. Chem. Phys.
, edited by S. Kais (Wiley,
2014
), Vol.
154
.
48.
J. D.
Biamonte
and
P.
Love
,
Phys. Rev. A
78
,
012352
(
2008
).
49.
S. P.
Jordan
and
E.
Farhi
,
Phys. Rev. A
77
,
062329
(
2008
).
50.
Y.
Cao
,
R.
Babbush
,
J.
Biamonte
, and
S.
Kais
, “
Towards experimentally realizable Hamiltonian gadgets
,” preprint arXiv:1311.2555 [quant-ph] (
2013
).
51.
N.
Hatano
and
M.
Suzuki
, “
Finding exponential product formulas of higher orders
,” in
Quantum Annealing and Other Optimization Methods
,
Lecture Notes in Physics
(
Springer
,
Heidelberg
,
2005
).
52.
S.
Boixo
and
R. D.
Somma
,
Phys. Rev. A
81
,
032308
(
2010
).
53.
A.
Szabo
and
N.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Dover Publications
,
1996
).
54.
P.
Jordan
and
E.
Wigner
,
Z. Phys. A
47
,
631
(
1928
).
55.
S. B.
Bravyi
and
A. Y.
Kitaev
,
Ann. Phys.
298
,
210
(
2002
).
56.
J. T.
Seeley
,
M. J.
Richard
, and
P. J.
Love
,
J. Chem. Phys.
137
,
224109
(
2012
).
57.
R.
Babbush
,
P.
Love
, and
A.
Aspuru-Guzik
, “
Adiabatic quantum simulation of quantum chemistry
,” preprint arXiv:1311.3967v2 [quant-ph] (
2013
).
58.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
60.
J.
Pittner
,
P.
Nachtigall
,
P.
Čársky
,
J.
Mášik
, and
I.
Hubač
,
J. Chem. Phys.
110
,
10275
(
1999
).
61.
F. A.
Evangelista
,
W. D.
Allen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
125
,
154113
(
2006
).
62.
K.
Bhaskaran-Nair
,
O.
Demel
, and
J.
Pittner
,
J. Chem. Phys.
132
,
154105
(
2010
).
63.
O.
Demel
and
J.
Pittner
,
J. Chem. Phys.
128
,
104108
(
2008
).
64.
H.
Wang
,
S.
Ashhab
, and
F.
Nori
,
Phys. Rev. A
79
,
042335
(
2009
).
65.
T.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
66.
K.
Aidas
 et al,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
269
(
2013
).
67.
DALTON, A molecular electronic structure program, release dalton2013.0 (
2013
), see http://daltonprogram.org.
68.
C. D.
Sherrill
,
M. L.
Leininger
,
T. J.
Van Huis
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
108
,
1040
(
1998
).
69.
R. D.
Somma
and
S.
Boixo
,
SIAM J. Comput.
42
,
593
(
2013
).
70.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
(
2011
).
71.
F.
Gaitan
,
Quantum Error Correction and Fault Tolerant Quantum Computing
(
CRC Press
,
2008
).
You do not currently have access to this content.