The problem of predicting polymorphism in atomic and molecular crystals constitutes a significant challenge both experimentally and theoretically. From the theoretical viewpoint, polymorphism prediction falls into the general class of problems characterized by an underlying rough energy landscape, and consequently, free energy based enhanced sampling approaches can be brought to bear on the problem. In this paper, we build on a scheme previously introduced by two of the authors in which the lengths and angles of the supercell are targeted for enhanced sampling via temperature accelerated adiabatic free energy dynamics [T. Q. Yu and M. E. Tuckerman, Phys. Rev. Lett.107, 015701 (2011)]. Here, that framework is expanded to include general order parameters that distinguish different crystalline arrangements as target collective variables for enhanced sampling. The resulting free energy surface, being of quite high dimension, is nontrivial to reconstruct, and we discuss one particular strategy for performing the free energy analysis. The method is applied to the study of polymorphism in xenon crystals at high pressure and temperature using the Steinhardt order parameters without and with the supercell included in the set of collective variables. The expected fcc and bcc structures are obtained, and when the supercell parameters are included as collective variables, we also find several new structures, including fcc states with hcp stacking faults. We also apply the new method to the solid-liquid phase transition in copper at 1300 K using the same Steinhardt order parameters. Our method is able to melt and refreeze the system repeatedly, and the free energy profile can be obtained with high efficiency.

1.
J.
Bernstein
,
Polymorphism in Molecular Crystals
(
Oxford University Press
,
Great Clarendon Street, Oxford
,
2002
).
2.
S. M.
Woodley
and
R.
Catlow
,
Nat. Mater.
7
,
937
(
2008
).
3.
H.
Nowell
,
C. S.
Frampton
,
J.
Waite
, and
S. L.
Price
,
Acta Cryst.
62
,
642
(
2006
).
4.
R.
Podeszwa
,
B. M.
Rice
, and
K.
Szalewicz
,
Phys. Rev. Lett.
101
,
115503
(
2008
).
5.
A. B.
Kazantsev
,
P. G.
Karamertzanis
,
C. S.
Adjman
,
C. C.
Pantelides
,
S. L.
Price
,
P. T. A.
Galek
,
G. M.
Day
, and
A. J.
Cruz-Cabeza
,
Int. J. Pharm.
418
,
168
(
2011
).
6.
T.-Q.
Yu
and
M. E.
Tuckerman
,
Phys. Rev. Lett.
107
,
015701
(
2011
).
7.
T.
Gelbrich
,
D.
Rossi
, and
U. J.
Griesser
,
Acta Cryst.
E68
,
o235
(
2012
).
8.
J. D.
Dunitz
and
H. A.
Scheraga
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
14309
(
2004
).
9.
R.
Martoňák
,
A.
Laio
, and
M.
Parrinello
,
Phys. Rev. Lett.
90
,
075503
(
2003
).
10.
P.
Raiteri
,
R.
Martoňák
, and
M.
Parrinello
,
Angew. Chem., Int. Ed.
44
,
3769
(
2005
).
11.
T.
Zykova-Timan
,
P.
Raiteri
, and
M.
Parrinello
,
J. Phys. Chem. B
112
,
13231
(
2008
).
12.
P. G.
Karamertzanis
,
P.
Raiteri
,
M.
Parrinello
,
M.
Leslie
, and
S. L.
Price
,
J. Phys. Chem. B
112
,
4298
(
2008
).
13.
T.-Q.
Yu
and
M. E.
Tuckerman
,
Eur. Phys. J. Spec. Top.
200
,
183
(
2011
).
14.
S.
Kirkpatrick
,
C. D.
Gelatt
, and
M. P.
Vecchi
,
Science
220
,
671
(
1983
).
15.
E.
Marinari
and
G.
Parisi
,
Europhys. Lett.
19
,
451
(
1992
).
16.
P. N.
Vorontsov-Velyaminov
and
A. P.
Lyubartsev
,
Mol. Simul.
9
,
285
(
1992
).
17.
R. H.
Swendsen
and
J. S.
Wang
,
Phys. Rev. Lett.
57
,
2607
(
1986
).
18.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
19.
M. R.
Sorensen
and
A. F.
Voter
,
J. Chem. Phys.
112
,
9599
(
2000
).
20.
L.
Rosso
,
P.
Minary
,
Z. W.
Zhu
, and
M. E.
Tuckerman
,
J. Chem. Phys.
116
,
4389
(
2002
).
21.
L.
Rosso
and
M. E.
Tuckerman
,
Mol. Simul.
28
,
91
(
2002
).
22.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
23.
E. E.
Santiso
and
B. L.
Trout
,
J. Chem. Phys.
134
,
064109
(
2011
).
24.
P.
Geiger
and
C.
Dellago
,
J. Chem. Phys.
139
,
164105
(
2013
).
25.
L.
Maragliano
and
E.
Vanden-Eijnden
,
Chem. Phys. Lett.
426
,
168
(
2006
).
26.
J. B.
Abrams
and
M. E.
Tuckerman
,
J. Phys. Chem. B
112
,
15742
(
2008
).
27.
G.
Ciccotti
and
S.
Meloni
,
Phys. Chem. Chem. Phys.
13
,
5952
(
2011
).
28.
W.
E
and
B.
Engquist
,
Commun. Math. Sci.
1
,
87
(
2003
).
29.
W.
E
,
B.
Engquist
,
X.
Li
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Commun. Comput. Phys.
2
,
367
(
2007
).
30.
L.
Maragliano
,
A.
Fischer
,
E.
Vanden-Eijnden
, and
G.
Ciccotti
,
J. Chem. Phys.
125
,
024106
(
2006
).
31.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
J. Chem. Phys.
101
,
4177
(
1994
).
32.
D. J.
Tobias
,
G. M.
Martyna
, and
M. L.
Klein
,
J. Phys. Chem.
97
,
12959
(
1993
).
33.
M. E.
Tuckerman
,
J.
Alejandre
,
R.
López-Rendón
,
A. L.
Jochim
, and
G. J.
Martyna
,
J. Phys. A
39
,
5629
(
2006
).
34.
T.-Q.
Yu
,
J.
Alejandre
,
R.
López-Rendón
,
G. J.
Martyna
, and
M. E.
Tuckerman
,
Chem. Phys.
370
,
294
(
2010
).
35.
G. J.
Martyna
,
M. E.
Tuckerman
, and
M. L.
Klein
,
J. Chem. Phys.
97
,
2635
(
1992
).
36.
Y.
Liu
and
M. E.
Tuckerman
,
J. Chem. Phys.
112
,
1685
(
2000
).
37.
E.
Vanden-Eijnden
and
G.
Ciccotti
,
Chem. Phys. Lett.
429
,
310
(
2006
).
38.
G.
Bussi
and
M.
Parrinello
,
Phys. Rev. E
75
,
056707
(
2007
).
39.
S.
Melchionna
,
J. Chem. Phys.
127
,
044108
(
2007
).
40.
L.
Maragliano
and
E.
Vanden-Eijnden
,
J. Chem. Phys.
128
,
184110
(
2008
).
41.
J. G.
Kirkwood
,
J. Chem. Phys.
3
,
300
(
1935
).
42.
M.
Monteferrante
,
S.
Bonella
,
S.
Meloni
, and
G.
Ciccotti
,
Mol. Simul.
35
,
1116
(
2009
).
43.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
Phys. Rev. B
66
,
052301
(
2002
).
44.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
126
,
164103
(
2007
).
45.
M.
Li
,
M.
Duan
,
J.
Fan
,
L.
Han
, and
S.
Huo
,
J. Chem. Phys.
139
,
185101
(
2013
).
46.
N.
Duff
and
B.
Peters
,
J. Chem. Phys.
135
,
134101
(
2011
).
47.
D.
Quigley
and
P. M.
Rodger
,
J. Chem. Phys.
128
,
154518
(
2008
).
48.
D.
Quigley
and
P. M.
Rodger
,
Mol. Simul.
35
,
613
(
2009
).
49.
W.
Lechner
and
C.
Dellago
,
J. Chem. Phys.
129
,
114707
(
2008
).
50.
A.
Reinhardt
,
J. P. K.
Doye
,
E. G.
Noya
, and
C.
Vega
,
J. Chem. Phys.
137
,
194504
(
2012
).
51.
A. B.
Belonoshko
,
R.
Ahuja
, and
B.
Johansson
,
Phys. Rev. Lett.
87
,
165505
(
2001
).
52.
A. B.
Belonoshko
,
O.
LeBacq
,
R.
Ahuja
, and
B.
Johansson
,
J. Chem. Phys.
117
,
7233
(
2002
).
53.
F.
Saija
and
S.
Prestipino
,
Phys. Rev. B
72
,
024113
(
2005
).
54.
A. B.
Belonoshko
,
Phys. Rev. B
78
,
174109
(
2008
).
55.
M.
Ross
and
A. K.
McMahan
,
Phys. Rev. B
21
,
1658
(
1980
).
56.
P.
Loubeyre
,
Phys. Rev. B
37
,
5432
(
1988
).
57.
M. E.
Tuckerman
,
D. A.
Yarne
,
S. O.
Samuelson
,
A. L.
Hughes
, and
G.
Martyna
,
Comput. Phys. Commun.
128
,
333
(
2000
).
58.
PINY_MD is available as an open-source code under the Common Public License and capable of performing a wide variety of molecular dynamics and path-integral simulations under different ensembles, using forces calculated from the force fields or from “on the fly” density functional theory electronic structure calculations. It can be downloaded from homepages.nyu.edu/mt33/PINY_MD/PINY.html.
59.
A.
Rahman
and
G.
Jacucci
,
Il Nuovo Cimento
4
,
357
(
1984
).
60.
D.
Sheppard
,
P.
Xiao
,
W.
Chemelewski
,
D. D.
Johnson
, and
G.
Henkelman
,
J. Chem. Phys.
136
,
074103
(
2012
).
61.
H.
Cynn
,
C. S.
Yoo
,
B.
Baer
,
V.
Iota-Herbei
,
A. K.
McMahan
,
M.
Nicol
, and
S.
Carlson
,
Phys. Rev. Lett.
86
,
4552
(
2001
).
62.
See https://code.google.com/p/debyer for a brief description and related links to the Debyer package for computing x-ray and neutron powder diffraction patterns from atomic positions.
63.
P.
Debye
,
Ann. Phys.
351
,
809
(
1915
).
64.
See supplementary material at http://dx.doi.org/10.1063/1.4878665 for animations of illustrating the K-means clustering algorithm applied to the fcc and bcc lattices and of the TAMD/d-AFED trajectory of the melting and refreezing of copper.
65.
Q.
Mei
and
K.
Lu
,
Prog. Mater. Sci.
52
,
1175
(
2007
).
66.
G.
Grimvall
,
B.
Magyari-Köpe
,
V.
Ozoliņš
, and
K. A.
Persson
,
Rev. Mod. Phys.
84
,
945
(
2012
).
67.
R. M.
Lynden-Bell
,
J. S.
Van Duijneveldt
, and
D.
Frenkel
,
Mol. Phys.
80
,
801
(
1993
).
68.
R.
Radhakrishnan
and
B. L.
Trout
,
Phys. Rev. Lett.
90
,
158301
(
2003
).
69.
Y.
Mishin
,
M. J.
Mehl
,
D. A.
Papaconstantopoulos
,
A. F.
Voter
, and
J. D.
Kress
,
Phys. Rev. B
63
,
224106
(
2001
).
70.
A. B.
Belonoshko
,
N. V.
Skorodumova
,
A.
Rosengren
, and
B.
Johansson
,
Phys. Rev. B
73
,
012201
(
2006
).
71.
J. R.
Morris
,
C. Z.
Wang
,
K. M.
Ho
, and
C. T.
Chan
,
Phys. Rev. B
49
,
3109
(
1994
).
72.
L.
Zheng
,
Q.
An
,
Y.
Xie
,
Z.
Sun
, and
S. N.
Luo
,
J. Chem. Phys.
127
,
164503
(
2007
).
73.
S.-N.
Luo
,
A.
Strachan
, and
D. C.
Swift
,
J. Chem. Phys.
120
,
11640
(
2004
).
74.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
75.
B.
Peters
,
J. Chem. Phys.
125
,
241101
(
2006
).

Supplementary Material

You do not currently have access to this content.