The Minima Hopping global optimization method uses physically realizable molecular dynamics moves in combination with an energy feedback that guarantees the escape from any potential energy funnel. For the purpose of finding reaction pathways, we argue that Minima Hopping is particularly suitable as a guide through the potential energy landscape and as a generator for pairs of minima that can be used as input structures for methods capable of finding transition states between two minima. For Lennard-Jones benchmark systems we compared this Minima Hopping guided path search method to a known approach for the exploration of potential energy landscapes that is based on deterministic mode-following. Although we used a stabilized mode-following technique that reliably allows to follow distinct directions when escaping from a local minimum, we observed that Minima Hopping guided path search is far superior in finding lowest-barrier reaction pathways. We, therefore, suggest that Minima Hopping guided path search can be used as a simple and efficient way to identify energetically low-lying chemical reaction pathways. Finally, we applied the Minima Hopping guided path search approach to 75-atom and 102-atom Lennard-Jones systems. For the 75-atom system we found pathways whose highest energies are significantly lower than the highest energy along the previously published lowest-barrier pathway. Furthermore, many of these pathways contain a smaller number of intermediate transition states than the previously publish lowest-barrier pathway. In case of the 102-atom system Minima Hopping guided path search found a previously unknown and energetically low-lying funnel.

1.
J.
Holland
,
Adaptation in Natural and Artificial Systems an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
(
MIT Press
,
Cambridge, MA
,
1992
).
2.
S. M.
Woodley
,
P. D.
Battle
,
J. D.
Gale
, and
C. R. A.
Catlow
,
Phys. Chem. Chem. Phys.
1
,
2535
(
1999
).
3.
V. E.
Bazterra
,
M. B.
Ferraro
, and
J. C.
Facelli
,
J. Chem. Phys.
116
,
5984
(
2002
).
4.
A. R.
Oganov
and
C. W.
Glass
,
J. Chem. Phys.
124
,
244704
(
2006
).
5.
S. E.
Schönborn
,
S.
Goedecker
,
S.
Roy
, and
A. R.
Oganov
,
J. Chem. Phys.
130
,
144108
(
2009
).
6.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
(
1997
).
7.
G. T.
Barkema
and
N.
Mousseau
,
Phys. Rev. Lett.
77
,
4358
(
1996
).
8.
N.
Mousseau
and
G. T.
Barkema
,
Phys. Rev. E
57
,
2419
(
1998
).
9.
R.
Malek
and
N.
Mousseau
,
Phys. Rev. E
62
,
7723
(
2000
).
10.
E.
Machado-Charry
,
L. K.
Béland
,
D.
Caliste
,
L.
Genovese
,
T.
Deutsch
,
N.
Mousseau
, and
P.
Pochet
,
J. Chem. Phys.
135
,
034102
(
2011
).
11.
N.
Mousseau
,
L. K.
Béland
,
P.
Brommer
,
J.-F.
Joly
,
F.
El-Mellouhi
,
E.
Machado-Charry
,
M.-C.
Marinica
, and
P.
Pochet
,
J. At., Mol., Opt. Phys.
2012
,
925278
.
12.
S.
Goedecker
,
J. Chem. Phys.
120
,
9911
(
2004
).
13.
S.
Roy
,
S.
Goedecker
, and
V.
Hellmann
,
Phys. Rev. E
77
,
056707
(
2008
).
14.
M.
Amsler
and
S.
Goedecker
,
J. Chem. Phys.
133
,
224104
(
2010
).
15.
Z.
Wang
,
L. L.
Daemen
,
Y.
Zhao
,
C. S.
Zha
,
R. T.
Downs
,
X.
Wang
,
Z. L.
Wang
, and
R. J.
Hemley
,
Nat. Mater.
4
,
922
(
2005
).
16.
C. R.
Hickenboth
,
J. S.
Moore
,
S. R.
White
,
N. R.
Sottos
,
J.
Baudry
, and
S. R.
Wilson
,
Nature (London)
446
,
423
(
2007
).
17.
M.
Moura
,
L.
Broadbelt
, and
K.
Tyo
,
Systems Metabolic Engineering
,
Methods in Molecular Biology
Vol.
985
, edited by
H. S.
Alper
(
Humana Press
,
2013
), pp.
123
147
.
18.
19.
D.
Wales
,
Energy Landscapes: Applications to Clusters, Biomolecules and Glasses
(
Cambridge University Press
,
2003
).
21.
D. J.
Wales
,
Int. Rev. Phys. Chem.
25
,
237
(
2006
).
22.
J. P. K.
Doye
,
M. a.
Miller
, and
D. J.
Wales
,
J. Chem. Phys.
110
,
6896
(
1999
).
23.
J. P. K.
Doye
,
M. A.
Miller
, and
D. J.
Wales
,
J. Chem. Phys.
111
,
8417
(
1999
).
24.
J. M.
Carr
and
D. J.
Wales
,
J. Phys. Chem. B
112
,
8760
(
2008
).
25.
M.
Khalili
and
D. J.
Wales
,
J. Phys. Chem. B
112
,
2456
(
2008
).
26.
H.
Kallel
,
N.
Mousseau
, and
F. M. C.
Schiettekatte
,
Phys. Rev. Lett.
105
,
045503
(
2010
).
27.
K.
Levasseur-Smith
and
N.
Mousseau
,
Eur. Phys. J. B
64
,
165
(
2008
).
28.
P.
Ganster
,
L. K.
Béland
, and
N.
Mousseau
,
Phys. Rev. B
86
,
075408
(
2012
).
29.
K.
Levasseur-Smith
and
N.
Mousseau
,
J. Appl. Phys.
103
,
113502
(
2008
).
30.
M.-C.
Marinica
,
F.
Willaime
, and
N.
Mousseau
,
Phys. Rev. B
83
,
094119
(
2011
).
31.
J.-F.
Joly
,
L. K.
Béland
,
P.
Brommer
, and
N.
Mousseau
,
Phys. Rev. B
87
,
144204
(
2013
).
32.
N.
Mousseau
and
P.
Derreumaux
,
Front. Biosci.
13
,
4495
(
2008
).
33.
G.
Wei
,
N.
Mousseau
, and
P.
Derreumaux
,
J. Chem. Phys.
117
,
11379
(
2002
).
34.
X.
Dong
,
W.
Chen
,
N.
Mousseau
, and
P.
Derreumaux
,
J. Chem. Phys.
128
,
125108
(
2008
).
35.
J.-F.
St-Pierre
,
N.
Mousseau
, and
P.
Derreumaux
,
J. Chem. Phys.
128
,
045101
(
2008
).
36.
J.-F.
St-Pierre
and
N.
Mousseau
,
Proteins: Struct., Funct., Bioinf.
80
,
1883
(
2012
).
37.
L.
Dupuis
and
N.
Mousseau
,
J. Chem. Phys.
136
,
035101
(
2012
).
38.
C.
Dellago
,
P. G.
Bolhuis
,
F. S.
Csajka
, and
D.
Chandler
,
J. Chem. Phys.
108
,
1964
(
1998
).
39.
C.
Dellago
,
P. G.
Bolhuis
, and
D.
Chandler
,
J. Chem. Phys.
108
,
9236
(
1998
).
40.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
,
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
41.
C.
Dellago
,
P. G.
Bolhuis
, and
P. L.
Geissler
, “
Transition path sampling
,”
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2003
), pp.
1
78
.
42.
M.
Grünwald
,
C.
Dellago
, and
P. L.
Geissler
,
J. Chem. Phys.
129
,
194101
(
2008
).
43.
M.
Grünwald
and
C.
Dellago
,
Nano Lett.
9
,
2099
(
2009
).
44.
W.
Lechner
,
C.
Dellago
, and
P. G.
Bolhuis
,
Phys. Rev. Lett.
106
,
085701
(
2011
).
45.
T. F.
Miller
and
C.
Predescu
,
J. Chem. Phys.
126
,
144102
(
2007
).
46.
S.
Goedecker
, in
Modern Methods of Crystal Structure Prediction
, edited by
A. R.
Oganov
(
Wiley-VCH
,
2011
), pp.
131
145
.
47.
J. P. K.
Doye
, in
Global Optimization - Scientific and Engineering Case Studies
, edited by
J. D.
Pintér
(
Springer
,
2006
), pp.
103
139
.
48.
J. E.
Jones
,
Proc. R. Soc. London
106
,
463
(
1924
).
49.
J. E.
Jones
and
A. E.
Ingham
,
Proc. R. Soc. London
107
,
636
(
1925
).
50.
A.
Sadeghi
,
S. A.
Ghasemi
,
B.
Schaefer
,
S.
Mohr
,
M. A.
Lill
, and
S.
Goedecker
,
J. Chem. Phys.
139
,
184118
(
2013
).
51.
Q.
Ma
, and
P.
Steenkiste
, in
Proceedings of the Fifth International Conference on Network Protocols
, edited by
M.
Ammar
, and
U.
Shankar
(
IEEE Computer Society
,
1997
), pp.
191
202
.
52.
E.
Dijkstra
,
Numer. Math.
1
,
269
(
1959
).
53.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
,
Phys. Rev. Lett.
97
,
170201
(
2006
).
54.
C. G.
Broyden
,
IMA J. Appl. Math.
6
,
76
(
1970
).
55.
58.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
,
Numerical Recipes in Fortran: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
1992
).
59.
K.
Fukui
,
J. Phys. Chem.
74
,
4161
(
1970
).
60.
O. M.
Becker
and
M.
Karplus
,
J. Chem. Phys.
106
,
1495
(
1997
).
61.
D. J.
Wales
,
M. A.
Miller
, and
T. R.
Walsh
,
Nature (London)
394
,
758
(
1998
).
62.
M.
Miller
,
D.
Wales
, and
V.
de Souza
, disconnectionDPS (Fortran program to generate disconnectivity graphs from stationary point databases, see http://www-wales.ch.cam.ac.uk/software.html).
63.
D. J.
Wales
,
J. Chem. Phys.
101
,
3750
(
1994
).
64.
D. J.
Wales
and
T. R.
Walsh
,
J. Chem. Phys.
105
,
6957
(
1996
).
65.
L. J.
Munro
and
D. J.
Wales
,
Phys. Rev. B
59
,
3969
(
1999
).
66.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
67.
A.
Heyden
,
A. T.
Bell
, and
F. J.
Keil
,
J. Chem. Phys.
123
,
224101
(
2005
).
68.
R. A.
Olsen
,
G. J.
Kroes
,
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
,
J. Chem. Phys.
121
,
9776
(
2004
).
69.
70.
C.
Lanczos
,
Applied Analysis
,
Dover Books on Mathematics
(
Dover Publications
,
1988
).
71.
A.
Behn
,
P. M.
Zimmerman
,
A. T.
Bell
, and
M.
Head-Gordon
,
J. Chem. Phys.
135
,
224108
(
2011
).
72.
R. P.
Brent
,
Algorithms for Minimization Without Derivatives
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1972
).
73.
S.
Goedecker
,
W.
Hellmann
, and
T.
Lenosky
,
Phys. Rev. Lett.
95
,
055501
(
2005
).
74.
W.
Hellmann
,
R. G.
Hennig
,
S.
Goedecker
,
C. J.
Umrigar
,
B.
Delley
, and
T.
Lenosky
,
Phys. Rev. B
75
,
085411
(
2007
).
75.
K.
Bao
,
S.
Goedecker
,
K.
Koga
,
F.
Lançon
, and
A.
Neelov
,
Phys. Rev. B
79
,
041405
(
2009
).
76.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
77.
G.
Mills
and
H.
Jónsson
,
Phys. Rev. Lett.
72
,
1124
(
1994
).
78.
G.
Mills
,
H.
Jónsson
, and
G. K.
Schenter
,
Surf. Sci.
324
,
305
(
1995
).
79.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
80.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
81.
R.
Granot
and
R.
Baer
,
J. Chem. Phys.
128
,
184111
(
2008
).
82.
S. A.
Ghasemi
and
S.
Goedecker
,
J. Chem. Phys.
135
,
014108
(
2011
).
83.
E. F.
Koslover
and
D. J.
Wales
,
J. Chem. Phys.
127
,
134102
(
2007
).
84.
For this comparison one must note that Sliding and Sampling samples pathways according to a defined probability distribution, whereas MHGPS searches the potential energy landscape for reaction pathways systematically.
85.
D. J.
Wales
,
J. Chem. Soc., Faraday Trans.
89
,
1305
(
1993
).
86.
M. D.
Wolf
and
U.
Landman
,
J. Phys. Chem. A
102
,
6129
(
1998
).
You do not currently have access to this content.