Orientational and positional ordering properties of liquid crystal monolayers are examined by means of Fundamental-Measure Density Functional Theory. Particles forming the monolayer are modeled as hard parallelepipeds of square section of size σ and length L. Their shapes are controlled by the aspect ratio κ = L/σ (>1 for prolate and <1 for oblate shapes). The particle centers of mass are restricted to a flat surface and three possible and mutually perpendicular orientations (in-plane and along the layer normal) of their uniaxial axes are allowed. We find that the structure of the monolayer depends strongly on particle shape and density. In the case of rod-like shapes, particles align along the layer normal in order to achieve the lowest possible occupied area per particle. This phase is a uniaxial nematic even at very low densities. In contrast, for plate-like particles, the lowest occupied area can be achieved by random in-plane ordering in the monolayer, i.e., planar nematic ordering takes place even at vanishing densities. It is found that the random in-plane ordering is not favorable at higher densities and the system undergoes an in-plane ordering transition forming a biaxial nematic phase or crystallizes. For certain values of the aspect ratio, the uniaxial-biaxial nematic phase transition is observed for both rod-like and plate-like shapes. The stability region of the biaxial nematic phase enhances with decreasing aspect ratios for plate-like particles, while the rod-like particles exhibit a reentrant phenomenon, i.e., a sequence of uniaxial-biaxial-uniaxial nematic ordering with increasing density if the aspect ratio is larger than 21.34. In addition to this, packing fraction inversion is observed with increasing surface pressure due to the alignment along the layers normal. At very high densities the nematic phase destabilizes to a nonuniform phases (columnar, smectic, or crystalline phases) for both shapes.

1.
A. B. G. M.
Leferink op Reinink
,
E.
van den Pol
,
A. V.
Petukhov
,
G. J.
Vroege
, and
H. N. W.
Lekkerkerker
,
Eur. Phys. J.: Spec. Top.
222
,
3053
(
2013
).
2.
P. J.
Camp
,
C. P.
Mason
,
M. P.
Allen
,
A. A.
Khare
, and
D. A.
Kofke
,
J. Chem. Phys.
105
,
2837
(
1996
).
3.
J. A.
Cuesta
and
D.
Frenkel
,
Phys. Rev. A
42
,
2126
(
1990
).
4.
D.
Frenkel
and
R.
Eppenga
,
Phys. Rev. A
31
,
1776
(
1985
).
5.
M. D.
Khandkar
and
M.
Barma
,
Phys. Rev. E
72
,
051717
(
2005
).
6.
U.
Tkalec
and
I.
Muševič
,
Soft Matter
9
,
8140
(
2013
).
7.
W.-S.
Xu
,
Y.-W.
Li
,
Z.-Y.
Sun
, and
L.-J.
An
,
J. Chem. Phys.
139
,
024501
(
2013
).
8.
M. E.
Foulaadvand
and
M.
Yarifard
,
Phys. Rev. E
88
,
052504
(
2013
).
9.
Z.
Zheng
,
F.
Wang
, and
Y.
Han
,
Phys. Rev. Lett.
107
,
065702
(
2011
).
10.
C. K.
Mishra
,
A.
Rangarajan
, and
R.
Ganapathy
,
Phys. Rev. Lett.
110
,
188301
(
2013
).
11.
Y.
Han
,
A.
Alsayed
,
M.
Nobili
, and
A. G.
Yodh
,
Phys. Rev. E
80
,
011403
(
2009
).
12.
N. F.
Bouxsein
,
C.
Leal
,
C. S.
McAllister
,
K. K.
Ewert
,
Y.
Li
,
C. E.
Samuel
, and
C. R.
Safinya
,
J. Am. Chem. Soc.
133
,
7585
(
2011
).
13.
T. E.
Herod
and
R. S.
Duran
,
Langmuir
14
,
6606
(
1998
).
14.
H.
Razafindralambo
,
A.
Richel
,
M.
Paquot
,
L.
Lins
, and
C.
Blecker
,
J. Phys. Chem. B
116
,
3998
(
2012
).
15.
X.
Ye
,
J.
Chen
,
M.
Enger
,
J. A.
Milan
,
W.
Li
,
L.
Qi
,
G.
Xing
,
J. E.
Collins
,
C. R.
Kagan
,
J.
Li
,
S. C.
Glotzer
, and
C. B.
Murray
,
Nat. Chem.
5
,
466
(
2013
).
16.
M. A.
Bates
and
D.
Frenkel
,
J. Chem. Phys.
112
,
10034
(
2000
).
17.
Y.
Martínez-Ratón
,
E.
Velasco
, and
L.
Mederos
,
J. Chem. Phys.
122
,
064903
(
2005
).
18.
A. M.
Somoza
and
R. C.
Desai
,
J. Phys. Chem.
96
,
1401
(
1992
).
19.
D.
Kramer
,
A.
Ben-Shaul
,
Z.-Y.
Chen
, and
W. M.
Gelbart
,
J. Chem. Phys.
96
,
2236
(
1992
).
20.
F.
Kim
,
S.
Kwan
,
J.
Akana
, and
P. D.
Yang
,
J. Am. Chem. Soc.
123
,
4360
(
2001
).
21.
E.
Van den Pol
,
A. V.
Petukhov
,
D. M. E.
Byelov
, and
G. J.
Vroege
,
Phys. Rev. Lett.
103
,
258301
(
2009
).
22.
Y.
Martínez-Ratón
,
S.
Varga
, and
E.
Velasco
,
Phys. Chem. Chem. Phys.
13
,
13247
(
2011
).
23.
S.
Belli
,
A.
Patti
,
M.
Dijkstra
, and
R. Van
Roij
,
Phys. Rev. Lett.
107
,
148303
(
2011
).
24.
S. D.
Peroukidis
and
A. G.
Vanakaras
,
Soft Matter
9
,
7419
(
2013
).
25.
J. A.
Cuesta
and
Y.
Martínez-Ratón
,
Phys. Rev. Lett.
78
,
3681
(
1997
).
26.
G.
Odriozola
, private communication (
2014
).
You do not currently have access to this content.