The excited state dynamics of isolated sulfur dioxide molecules have been investigated using the time-resolved photoelectron spectroscopy and time-resolved photoelectron-photoion coincidence techniques. Excited state wavepackets were prepared in the spectroscopically complex, electronically mixed (⁠|${\tilde{\rm B}}$|B̃)1B1/(Ã)1A2, Clements manifold following broadband excitation at a range of photon energies between 4.03 eV and 4.28 eV (308 nm and 290 nm, respectively). The resulting wavepacket dynamics were monitored using a multiphoton ionisation probe. The extensive literature associated with the Clements bands has been summarised and a detailed time domain description of the ultrafast relaxation pathways occurring from the optically bright (⁠|${\tilde{\rm B}}$|B̃)1B1 diabatic state is presented. Signatures of the oscillatory motion on the (⁠|${\tilde{\rm B}}$|B̃)1B1/(Ã)1A2 lower adiabatic surface responsible for the Clements band structure were observed. The recorded spectra also indicate that a component of the excited state wavepacket undergoes intersystem crossing from the Clements manifold to the underlying triplet states on a sub-picosecond time scale. Photoelectron signal growth time constants have been predominantly associated with intersystem crossing to the (⁠|${\tilde{\rm c}}$|c̃)3B2 state and were measured to vary between 750 and 150 fs over the implemented pump photon energy range. Additionally, pump beam intensity studies were performed. These experiments highlighted parallel relaxation processes that occurred at the one- and two-pump-photon levels of excitation on similar time scales, obscuring the Clements band dynamics when high pump beam intensities were implemented. Hence, the Clements band dynamics may be difficult to disentangle from higher order processes when ultrashort laser pulses and less-differential probe techniques are implemented.

1.
A. E.
Douglas
,
J. Chem. Phys.
45
,
1007
(
1966
).
2.
P.
Kusch
and
F. W.
Loomis
,
Phys. Rev.
55
,
850
(
1939
).
3.
A. E.
Douglas
,
Can. J. Phys.
36
,
147
(
1958
).
4.
Y.
Hamada
and
A. J.
Merer
,
Can. J. Phys.
53
,
2555
(
1975
).
5.
R. J.
Shaw
,
J. E.
Kent
, and
M. F.
O'Dwyer
,
Chem. Phys.
18
,
155
(
1976
).
6.
R. J.
Shaw
,
J. E.
Kent
, and
M. F.
O'Dwyer
,
Chem. Phys.
18
,
165
(
1976
).
7.
R.
Kullmer
and
W.
Demtröder
,
Chem. Phys.
92
,
423
(
1985
).
8.
K.
Kamiya
and
H.
Matsui
,
Bull. Chem. Soc. Jpn.
64
,
2792
(
1991
).
9.
H.
Müller
and
H.
Köppel
,
Chem. Phys.
183
,
107
(
1994
).
10.
E.
Hegazi
,
F.
Al-Adel
,
A.
Hamdan
, and
A.
Dastageer
,
J. Chem. Phys.
98
,
12169
(
1994
).
11.
E.
Hegazi
,
A.
Hamdan
, and
F.
Al-Adel
,
Chem. Phys. Lett.
221
,
33
(
1994
).
12.
J.
Baskin
,
F.
Al-Adel
, and
A.
Hamdan
,
Chem. Phys.
200
,
181
(
1995
).
13.
E.
Hegazi
,
A.
Hamdan
,
A.
Dastageer
, and
F.
Al-Adel
,
Mol. Phys.
88
,
1479
(
1996
).
14.
A.
Dastageer
,
E.
Hegazi
,
A.
Hamdan
, and
F.
Al-Adel
,
Chem. Phys. Lett.
275
,
283
(
1997
).
15.
S.
Bae
,
G.
Kim
, and
J.
Ku
,
Chem. Phys. Lett.
265
,
385
(
1997
).
16.
A.
Li
,
B.
Suo
,
Z.
Wen
, and
Y.
Wang
,
Sci. China, Ser. B: Chem.
49
,
289
(
2006
).
17.
H.
Watanabe
,
S.
Tsuchiya
, and
S.
Koda
,
Faraday Discuss. Chem. Soc.
75
,
365
(
1983
).
18.
H.
Watanabe
,
S.
Tsuchiya
, and
S.
Koda
,
J. Phys. Chem.
87
,
906
(
1983
).
19.
R.
Kullmer
and
W.
Demtröder
,
J. Chem. Phys.
83
,
2712
(
1985
).
20.
W. W.
Watson
and
A. E.
Parker
,
Phys. Rev.
37
,
1484
(
1931
).
21.
J. H.
Clements
,
Phys. Rev.
47
,
224
(
1935
).
22.
R. J.
Shaw
,
J. E.
Kent
, and
M. F.
O'Dwyer
,
J. Mol. Spectrosc.
82
,
1
(
1980
).
23.
H.
Watanabe
,
S.
Tsuchiya
, and
S.
Koda
,
J. Phys. Chem.
86
,
4274
(
1982
).
24.
R.
Kullmer
and
W.
Demtröder
,
J. Chem. Phys.
81
,
2919
(
1984
).
25.
T.
Suzuki
,
T.
Ebata
,
M.
Ito
, and
N.
Mikami
,
Chem. Phys. Lett.
116
,
268
(
1985
).
26.
J.
Brand
,
P.
Chiu
,
A.
Hoy
, and
H.
Bist
,
J. Mol. Spectrosc.
60
,
43
(
1976
).
27.
H.
Köppel
,
M.
Döscher
, and
S.
Mahapatra
,
Int. J. Quantum Chem.
80
,
942
(
2000
).
28.
C.
Lévêque
,
A.
Komainda
,
R.
Taïieb
, and
H.
Köppel
,
J. Chem. Phys.
138
,
044320
(
2013
).
29.
S.
Mai
,
P.
Marquetand
, and
L.
González
,
J. Chem. Phys.
140
,
204302
(
2014
).
30.
A. C.
Vandaele
,
C.
Hermans
, and
S.
Fally
,
J. Quant. Spectrosc. Radiat. Transfer
110
,
2115
(
2009
).
31.
A.
Fischer
,
R.
Kullmer
, and
W.
Demtröder
,
Chem. Phys.
83
,
415
(
1984
).
32.
S. C.
Bae
,
H. S.
Son
,
G. H.
Kim
, and
J. K.
Ku
,
J. Phys. Chem. A
103
,
7432
(
1999
).
33.
H.
Watanabe
,
S.
Tsuchiya
, and
S.
Koda
,
J. Chem. Phys.
82
,
5310
(
1985
).
34.
C.
Lévêque
,
R.
Taïieb
, and
H.
Köppel
,
J. Chem. Phys.
140
,
091101
(
2014
).
35.
S.
Becker
,
C.
Braatz
,
J.
Lindner
, and
E.
Tiemann
,
Chem. Phys.
196
,
275
(
1995
).
36.
M. W.
Wilson
,
M.
Rothschild
,
D. F.
Muller
, and
C. K.
Rhodes
,
J. Chem. Phys.
77
,
1837
(
1982
).
37.
C.
Effenhauser
,
P.
Felder
, and
J.
Huber
,
Chem. Phys.
142
,
311
(
1990
).
38.
K. L.
Knappenberger
and
A. W.
Castleman
,
J. Phys. Chem. A
108
,
9
(
2004
).
39.
D.-D.
Zhang
,
Q.
Ni
,
S.-Z.
Luo
,
J.
Zhang
,
H.
Liu
,
H.-F.
Xu
,
M.-X.
Jin
, and
D.-J.
Ding
,
Chin. Phys. Lett.
28
,
033301
(
2011
).
40.
I. V.
Hertel
and
W.
Radloff
,
Rep. Prog. Phys.
69
,
1897
(
2006
).
41.
A.
Stolow
and
J. G.
Underwood
,
Adv. Chem. Phys.
139
,
497
(
2008
).
42.
A. E.
Boguslavskiy
,
J.
Mikosch
,
A.
Gijsbertsen
,
M.
Spanner
,
S.
Patchkovskii
,
N.
Gador
,
M. J. J.
Vrakking
, and
A.
Stolow
,
Science
335
,
1336
(
2012
).
43.
C.
Lévêque
,
R.
Taïieb
, and
H.
Köppel
,
J. Chem. Phys.
140
,
204303
(
2014
).
44.
T.
Tsuboi
,
E. Y.
Xu
,
Y. K.
Bae
, and
K. T.
Gillen
,
Rev. Sci. Instrum.
59
,
1357
(
1988
).
45.
W. C.
Wiley
and
I. H.
McLaren
,
Rev. Sci. Instrum.
26
,
1150
(
1955
).
46.
L. J.
Frasinski
,
K.
Codling
, and
P. A.
Hatherly
,
Science
246
,
1029
(
1989
).
47.
J.
Mikosch
and
S.
Patchkovskii
,
J. Mod. Opt.
60
,
1426
(
2013
).
48.
J.
Mikosch
and
S.
Patchkovskii
,
J. Mod. Opt.
60
,
1439
(
2013
).
49.
G.
Wu
,
A. E.
Boguslavskiy
,
O.
Schalk
,
M. S.
Schuurman
, and
A.
Stolow
,
J. Chem. Phys.
135
,
164309
(
2011
).
50.
J. R.
Knutson
,
D. G.
Walbridge
, and
L.
Brand
,
Biochemistry
21
,
4671
(
1982
).
51.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
52.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
53.
R. A.
Kendall
,
T. H.
Dunning
 Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
54.
W. A.
de Jong
,
R. J.
Harrison
, and
D. A.
Dixon
,
J. Chem. Phys.
114
,
48
(
2001
).
55.
H.
Nakano
,
J. Chem. Phys.
99
,
7983
(
1993
).
56.
H.
Nakano
,
Chem. Phys. Lett.
207
,
372
(
1993
).
57.
58.
D. G.
Fedorov
,
S.
Koseki
,
M. W.
Schmidt
, and
M. S.
Gordon
,
Int. Rev. Phys. Chem.
22
,
551
(
2003
).
59.
R.
Englman
and
J.
Jortner
,
Mol. Phys.
18
,
145
(
1970
).
60.
Y.
Mo
,
J.
Yang
, and
G.
Chen
,
J. Chem. Phys.
120
,
1263
(
2004
).
61.
L.
Wang
,
Y. T.
Lee
, and
D. A.
Shirley
,
J. Chem. Phys.
87
,
2489
(
1987
).
62.
K.
Kimura
,
S.
Katsumata
,
Y.
Achiba
,
T.
Yamazaki
, and
S.
Iwata
,
Handbook of He(I) Photoelectron Spectra of Fundamental Organic Molecules
, 1st ed. (
Japan Scientific Societies Press
,
Tokyo, Japan
,
1981
).
63.
K.
Norwood
and
C. Y.
Ng
,
J. Chem. Phys.
92
,
1513
(
1990
).
64.
J.
Erickson
and
C. Y.
Ng
,
J. Chem. Phys.
75
,
1650
(
1981
).
65.
T.
Sato
,
T.
Kinugawa
,
T.
Arikawa
, and
M.
Kawasaki
,
Chem. Phys.
165
,
173
(
1992
).
66.
E. S.
Wisniewski
and
A. W.
Castleman
,
J. Phys. Chem. A
106
,
10843
(
2002
).
67.
H.
Watanabe
,
Y.
Hyodo
,
S.
Tsuchiya
, and
S.
Koda
,
Chem. Phys. Lett.
81
,
439
(
1981
).
68.
H.
Watanabe
,
Y.
Hyodo
,
S.
Tsuchiya
, and
S.
Koda
,
J. Phys. Chem.
86
,
685
(
1982
).
69.
D. L.
Holtermann
,
E. K. C.
Lee
, and
R.
Nanes
,
J. Phys. Chem.
87
,
3926
(
1983
).
70.
R.
Kullmer
and
W.
Demtröder
,
J. Chem. Phys.
84
,
3672
(
1986
).
71.
S. C.
Bae
,
H. S.
Yoo
, and
J. K.
Ku
,
J. Chem. Phys.
109
,
1251
(
1998
).
72.
H. S.
Biswal
,
S. V. K.
Kumar
, and
S. J.
Wategaonkar
,
J. Chem. Phys.
128
,
204312
(
2008
).
73.
J.
Brand
,
V.
Jones
, and
C.
di Lauro
,
J. Mol. Spectrosc.
40
,
616
(
1971
).
74.
J. C. D.
Brand
and
R.
Nanes
,
J. Mol. Spectrosc.
46
,
194
(
1973
).
75.
C.-L.
Huang
,
S.-S.
Ju
,
I.-C.
Chen
,
A. J.
Merer
,
C.-K.
Ni
, and
A.
Kung
,
J. Mol. Spectrosc.
203
,
151
(
2000
).
76.
C.-L.
Huang
,
I.-C.
Chen
,
A. J.
Merer
,
C.-K.
Ni
, and
A. H.
Kung
,
J. Chem. Phys.
114
,
1187
(
2001
).
77.
F.
Su
,
J. W.
Bottenheim
,
D. L.
Thorsell
,
J. G.
Calvert
, and
E. K.
Damon
,
Chem. Phys. Lett.
49
,
305
(
1977
).
78.
C. Y. R.
Wu
and
C. Y.
Ng
,
J. Chem. Phys.
76
,
4406
(
1982
).
79.
K.
Norwood
and
C.
Ng
,
Chem. Phys. Lett.
156
,
145
(
1989
).
80.
M. J.
Weiss
,
T.-C.
Hsieh
, and
G. G.
Meisels
,
J. Chem. Phys.
71
,
567
(
1979
).
81.
G.
Dujardin
and
S.
Leach
,
J. Chem. Phys.
75
,
2521
(
1981
).
82.
K.
Norwood
and
C. Y.
Ng
,
J. Chem. Phys.
93
,
6440
(
1990
).
83.
Q.
Meng
and
M.-B.
Huang
,
J. Comput. Chem.
32
,
142
(
2011
).
84.
S.
Goss
,
R.
McLoughlin
, and
J.
Morrison
,
Int. J. Mass Spectrom. Ion Process.
64
,
213
(
1985
).
85.
T. F.
Thomas
,
F.
Dale
, and
J. F.
Paulson
,
J. Chem. Phys.
84
,
1215
(
1986
).
86.
L.
Zhang
,
Z.
Wang
,
J.
Li
,
F.
Wang
,
S.
Liu
,
S.
Yu
, and
X.
Ma
,
J. Chen. Phys.
118
,
9185
(
2003
).
87.
M. H.
Palmer
,
D. A.
Shaw
, and
M. F.
Guest
,
Mol. Phys.
103
,
1183
(
2005
).
88.
D.
Golomb
,
K.
Watanabe
, and
F. F.
Marmo
,
J. Chem. Phys.
36
,
958
(
1962
).
89.
I. W.
Watkins
,
J. Mol. Spectrosc.
29
,
402
(
1969
).
90.
M.
Suto
,
R. L.
Day
, and
L. C.
Lee
,
J. Phys. B: At. Mol. Phys.
15
,
4165
(
1982
).
91.
B.
Xue
,
Y.
Chen
, and
H.-L.
Dai
,
J. Chem. Phys.
112
,
2210
(
2000
).
92.
H.
Kanamori
,
J. E.
Butler
,
K.
Kawaguchi
,
C.
Yamada
, and
E.
Hirota
,
J. Mol. Spectrosc.
113
,
262
(
1985
).
93.
H.
Katagiri
,
T.
Sako
,
A.
Hishikawa
,
T.
Yazaki
,
K.
Onda
,
K.
Yamanouchi
, and
K.
Yoshino
,
J. Mol. Struct.
413/414
,
589
(
1997
).
94.
M.
Brouard
,
R.
Cireasa
,
A. P.
Clark
,
T. J.
Preston
,
C.
Vallance
,
G. C.
Groenenboom
, and
O. S.
Vasyutinskii
,
J. Phys. Chem. A
108
,
7965
(
2004
).
95.
P. J.
Singh
,
A.
Shastri
,
R.
D'Souza
,
S. B.
Rao
, and
B.
Jagatap
,
J. Quant. Spectrosc. Radiat. Transfer
113
,
267
(
2012
).
96.
W.-Z.
Li
and
M.-B.
Huang
,
J. Phys. Chem. A
108
,
6901
(
2004
).
97.
C.
Xie
,
X.
Hu
,
L.
Zhou
,
D.
Xie
, and
H.
Guo
,
J. Chem. Phys.
139
,
014305
(
2013
).
98.
G.
Herzberg
,
Molecular Spectra and Molecular Structure Volume III - Electronic Spectra and Electronic Structure of Polyatomic Molecules
, 1st ed. (
Krieger
,
Malabar, Florida
,
1966
).
99.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
, 2nd ed. (
NRC Research Press
,
Ottawa, Canada
,
2006
).
100.
R.
Speth
,
C.
Braatz
, and
E.
Tiemann
,
J. Mol. Spectrosc.
192
,
69
(
1998
).
101.
Y.
Ralchenko
,
A. E.
Kramida
,
J.
Reader
, and
N. A.
Team
, NIST atomic spectra database (version 4.1) (
2013
).
102.
J. F.
Noxon
,
Can. J. Phys.
39
,
1110
(
1961
).
103.
A. J.
Merer
,
Discuss. Faraday Soc.
35
,
127
(
1963
).
104.
Y.
Hamada
and
A. J.
Merer
,
Can. J. Phys.
52
,
1443
(
1974
).
105.
K.
Yamanouchi
,
M.
Okunishi
,
Y.
Endo
, and
S.
Tsuchiya
,
J. Mol. Struct.
352/353
,
541
(
1995
).
106.
L.
Vušković
and
S.
Trajmar
,
J. Raman Spectrosc.
10
,
136
(
1981
).
107.
W.-Z.
Li
,
M.-B.
Huang
, and
B.-Z.
Chen
,
J. Chem. Phys.
120
,
4677
(
2004
).
108.
Z.
Yong-Feng
,
W.
Mei-Shan
,
Y.
Chuan-Lu
,
M.
Mei-Zhong
,
P.
Wei-Xiu
, and
M.
Rong-Cai
,
Chin. Phys. B
17
,
4163
(
2008
).
109.
D.
Holland
,
M.
MacDonald
,
M.
Hayes
,
P.
Baltzer
,
L.
Karlsson
,
M.
Lundqvist
,
B.
Wannberg
, and
W.
von Niessen
,
Chem. Phys.
188
,
317
(
1994
).
110.
J.
Eland
and
C.
Danby
,
Int. J. Mass Spectrom. Ion Phys.
1
,
111
(
1968
).
111.
D.
Lloyd
and
P.
Roberts
,
Mol. Phys.
26
,
225
(
1973
).
112.
Z.
Wang
,
L.
Zhang
,
J.
Li
,
F.
Wang
, and
S.
Yu
,
J. Mol. Spectrosc.
221
,
139
(
2003
).
You do not currently have access to this content.