Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.

1.
S.
Kjelstrup
and
D.
Bedeaux
,
Non-equilibrium Thermodynamics of Heterogeneous Systems
(
World-Scientific
,
2008
).
2.
Ø.
Wilhelmsen
,
G.
Skaugen
,
M.
Hammer
,
P. E.
Wahl
, and
J.
Morud
,
Ind. Eng. Chem. Res.
52
(
5
),
2130
(
2013
).
3.
H.
Vehkamäki
,
Classical Nucleation Theory in Multicomponent Systems
(
Springer
,
2006
).
4.
U.
Gasser
,
E. R.
Weeks
,
A.
Schofield
,
P. N.
Pusey
, and
D. A.
Weitz
,
Science
292
(
5515
),
258
(
2001
).
5.
S. T.
Tau
and
P. G.
Vekilov
,
Nature (London)
406
,
494
(
2000
).
6.
A.
Lervik
,
F.
Bresme
, and
S.
Kjelstrup
,
Soft Matter
5
,
2407
(
2009
).
7.
P. G.
Debenedetti
,
Metastable Liquids
, edited by
Princeton
(
Princeton University Press
,
1996
).
8.
V. I.
Kalikmanov
,
Nucleation Theory
, edited by
Berlin
(
Springer Verlag
,
2013
).
9.
R.
Strey
,
P. E.
Wagner
, and
T.
Schmeling
,
J. Chem. Phys.
84
(
4
),
2325
(
1986
).
10.
C.
Hung
,
M. J.
Krasnopoler
, and
J. L.
Katz
,
J. Chem. Phys.
90
(
3
),
1856
(
1989
).
11.
B. E.
Wyslouzil
,
J. H.
Seinfeld
,
R. C.
Flagan
, and
K.
Okuyama
,
J. Chem. Phys.
94
,
6827
(
1991
).
12.
K.
Iland
,
J.
Wölk
,
R.
Strey
, and
D.
Kashchiev
,
J. Chem. Phys.
127
(
15
),
154506
(
2007
).
13.
J. K.
Lee
,
J. A.
Barker
, and
F. F.
Abraham
,
J. Chem. Phys.
58
(
8
),
3166
(
1973
).
14.
M. Rao, B. J.
Berne
, and
M. H.
Kalos
,
J. Chem. Phys.
68
(
4
),
1325
(
1978
).
15.
B.
Chen
,
J. I.
Siepmann
,
J. O.
Kwang
, and
M. L.
Klein
,
J. Chem. Phys.
115
(
23
),
10903
(
2001
).
16.
S.
Auer
and
D.
Frenkel
,
Nature (London)
409
,
1020
(
2001
).
17.
L. G.
MacDowell
,
V. K.
Shen
, and
J. R.
Errington
,
J. Chem. Phys.
125
(
3
),
034705
(
2006
).
18.
J.
Wedekind
,
J.
Wölk
,
D.
Reguera
, and
R.
Strey
,
J. Chem. Phys.
127
(
15
),
154515
(
2007
).
19.
B. N.
Hale
and
M.
Thomason
,
Phys. Rev. Lett.
105
,
046101
(
2010
).
20.
J.
Diemand
,
R.
Angílil
,
K.
Tanaka
, and
H.
Tanaka
,
J. Chem. Phys.
139
(
7
),
074309
(
2013
).
21.
J. S.
Rowlinson
,
J. Stat. Phys.
20
(
2
),
197
(
1979
).
22.
J. W.
Cahn
and
J. E.
Hillard
,
J. Chem. Phys.
28
(
2
),
258
(
1958
).
23.
D.
Bedeaux
,
E.
Johannessen
, and
A.
Røsjorde
,
Physica A
330
(
3
),
329
(
2003
).
24.
K.
Glavatskiy
, “
Multicomponent interfacial transport described by the square gradient model during evaporation and condensation
,” Ph.D. thesis,
Norwegian University of Science and Technology
,
2009
.
25.
L.
Granasy
,
J. Non-Cryst. Solids
162
(
3
),
301
(
1993
).
26.
E.
Johannessen
and
D.
Bedeaux
,
Physica A
336
(
4
),
252
(
2004
).
27.
E.
Johannessen
and
D.
Bedeaux
,
Physica A
370
(
2
),
258
(
2006
).
28.
K.
Glavatskiy
and
D.
Bedeaux
,
J. Chem. Phys.
133
(
23
),
234501
(
2010
).
29.
A. J. M.
Yang
,
J. Chem. Phys.
82
,
2082
(
1985
).
30.
D.
Reguera
,
R. K.
Bowles
,
Y.
Djikaev
, and
H.
Reiss
,
J. Chem. Phys.
118
,
340
(
2003
).
31.
D.
Reguera
and
H.
Reiss
,
J. Chem. Phys.
119
,
1533
(
2003
).
32.
D.
Reguera
and
H.
Reiss
,
Phys. Rev. Lett.
93
(
16
),
165701
(
2004
).
33.
D. J.
Lee
,
M. M.
Telo de Gama
, and
K. E.
Gubbins
,
J. Chem. Phys.
85
(
1
),
490
(
1986
).
34.
K.
Glavatskiy
,
D.
Reguera
, and
D.
Bedeaux
,
J. Chem. Phys.
138
(
20
),
204708
(
2013
).
35.
M. S.
Wertheim
,
J. Chem. Phys.
65
(
6
),
2377
(
1976
).
36.
D. J.
Bukman
,
A. B.
Kolomeisky
, and
B.
Widom
,
Colloids Surf. A
128
(
1–3
),
119
(
1997
).
37.
C.
Varea
and
A.
Robledo
,
Physica A
255
(
3–4
),
269
(
1998
).
38.
M.
Iwamatsu
and
Y.
Okabe
,
J. Chem. Phys.
133
(
4
),
044706
(
2010
).
39.
D. Y.
Peng
and
B. R.
Robindon
,
Ind. Eng. Chem. Fundam.
15
(
1
),
59
(
1976
).
40.
H.
Li
,
P. J.
Jakobsen
,
Ø.
Wilhelmsen
, and
J.
Yan
,
Appl. Energy
88
(
11
),
3567
(
2011
).
41.
Ø.
Wilhelmsen
,
G.
Skaugen
,
O.
Jørstad
, and
H.
Li
,
Energy Proc.
23
,
236
(
2012
).
42.
M. L.
Michelsen
and
J. M.
Mollerup
,
Thermodynamic Models: Fundamentals and Computational Aspects
(
Tie-Line Publications
,
2007
).
43.
J.
Hruby
,
D. G.
Labetski
, and
M. E.
van Dongen
,
J. Chem. Phys.
127
(
16
),
164720
(
2007
).
44.
P. R.
ten Wolde
, “
Numerical study of pathways for homogeneous nucleation
,” Ph.D. thesis,
University of Amsterdam
,
1998
.
45.
V.
Talanquer
and
D. W.
Oxtoby
,
J. Chem. Phys.
102
(
5
),
2156
(
1995
).
46.
A.
Laaksonen
,
R.
McGraw
, and
H.
Vehkamäki
,
J. Chem. Phys.
111
(
5
),
2019
(
1999
).
47.
G.
Wilemski
,
J. Chem. Phys.
80
(
3
),
1370
(
1984
).
48.
I.
Inzoli
,
S.
Kjelstrup
,
D.
Bedeaux
, and
J. M.
Simon
,
Chem. Eng. Sci.
66
(
20
),
4533
(
2011
).
49.
J. J.
Jasper
,
J. Phys. Chem. Ref. Data.
1
(
4
),
841
(
1972
).
50.
G.
Wilemski
and
J. S.
Li
,
J. Chem. Phys.
121
(
16
),
7821
(
2004
).
51.
Ø.
Wilhelmsen
,
D.
Bedeaux
,
S.
Kjelstrup
, and
D.
Reguera
, in
Proceedings of JETC-13
,
2013
.
You do not currently have access to this content.