Due to its importance for the function of organic optoelectronic devices, accurate simulations of the singlet exciton diffusion are crucial to predict the performance of new materials. We present a protocol which allows for the efficient directional analysis of exciton transport with high-level ab initiomethods. It is based on an alternative to the frequently employed rate equation since the latter was found to be erroneous in some cases. The new approach can be used in combination with the master equation which is considerably faster than the corresponding Monte Carlo approach. The long-range character of the singlet exciton coupling is taken into account by an extrapolation scheme. The approach is applied to singlet exciton diffusion in those substances where these quantities are experimentally best established: naphthalene and anthracene. The high quality of the crystals, furthermore, diminish uncertainties arising from the geometrical structures used in the computations. For those systems, our new approach provides exciton diffusion lengths L for naphthalene and anthracene crystals which show an excellent agreement with their experimental counterparts. For anthracene, for example, the computed L value in a direction is computed to 58 nm while the experimental value is 60 ± 10 nm.

1.
N. R.
Armstrong
,
W.
Wang
,
D. M.
Alloway
,
D.
Placencia
,
E.
Ratcliff
, and
M.
Brumbach
,
Macromol. Rapid Commun.
30
,
717
(
2009
).
2.
R.
Meerheim
,
B.
Luessem
, and
K.
Leo
,
Proc. IEEE
97
,
1606
(
2009
).
3.
A. P.
Kulkarni
,
C. J.
Tonzola
,
A.
Babel
, and
S. A.
Jenekhe
,
Chem. Mater.
16
,
4556
(
2004
).
4.
C.
Dimitrakopoulos
and
P.
Malenfant
,
Adv. Mater.
14
,
99
(
2002
).
5.
C. R.
Newman
,
C. D.
Frisbie
,
D. A.
da Silva Filho
,
J.-L.
Brédas
,
P. C.
Ewbank
, and
K. R.
Mann
,
Chem. Mater.
16
,
4436
(
2004
).
7.
V.
Subramanian
,
P.
Chang
,
J.
Lee
,
S.
Molesa
, and
S.
Volkman
,
IEEE Trans. Comp. Packaging Technol.
28
,
742
(
2005
).
8.
K.
Myny
,
S.
Steudel
,
S.
Smout
,
P.
Vicca
,
F.
Furthner
,
B.
van der Putten
,
A.
Tripathi
,
G.
Gelinck
,
J.
Genoe
,
W.
Dehaene
, and
P.
Heremans
,
Org. Electron.
11
,
1176
(
2010
).
9.
M.
Riede
,
T.
Mueller
,
W.
Tress
,
R.
Schueppel
, and
K.
Leo
,
Nanotechnology
19
,
424001
(
2008
).
10.
B.
Kippelen
and
J.-L.
Brédas
,
Energy Environ. Sci.
2
,
251
(
2009
).
11.
G.
Dennler
,
M. C.
Scharber
, and
C. J.
Brabec
,
Adv. Mater.
21
,
1323
(
2009
).
12.
G.
Chidichimo
and
L.
Filippelli
,
Int. J. Photoenergy
2010
,
123534
(
2010
).
13.
C.
Deibel
and
V.
Dyakonov
,
Rep. Prog. Phys.
73
,
096401
(
2010
).
14.
C.
Kittel
,
Introduction to Solid State Physics
, 7th ed. (
John Wiley & Sons
,
New York
,
1996
).
15.
S.
Barth
and
H.
Bässler
,
Phys. Rev. Lett.
79
,
4445
(
1997
).
16.
N.
Kirova
,
S.
Brazovskii
, and
A.
Bishop
,
Synth. Met.
100
,
29
(
1999
).
17.
R. N.
Marks
,
J. J. M.
Halls
,
D. D. C.
Bradley
,
R. H.
Friend
, and
A. B.
Holmes
,
J. Phys.: Condens. Matter
6
,
1379
(
1994
).
18.
P. B.
Miranda
,
D.
Moses
, and
A. J.
Heeger
,
Phys. Rev. B
64
,
081201
(
2001
).
19.
R. C.
Powell
and
Z. G.
Soos
,
J. Lumin.
11
,
1
(
1975
).
20.
P.
Peumans
,
S.
Uchida
, and
S. R.
Forrest
,
Nature (London)
425
,
158
(
2003
).
21.
S.-B.
Rim
,
R. F.
Fink
,
J. C.
Schöneboom
,
P.
Erk
, and
P.
Peumans
,
Appl. Phys. Lett.
91
,
173504
(
2007
).
22.
K. J.
Bergemann
and
S. R.
Forrest
,
Appl. Phys. Lett.
99
,
243303
(
2011
).
23.
M.
Black
,
C.
Chavez
, and
E.
Brosha
,
Org. Electron.
8
,
601
(
2007
).
24.
H.
Gommans
,
S.
Schols
,
A.
Kadashchuk
,
P.
Heremans
, and
S. C. J.
Meskers
,
J. Phys. Chem. C
113
,
2974
(
2009
).
25.
S.-B.
Rim
and
P.
Peumans
,
J. Appl. Phys.
103
,
124515
(
2008
).
26.
B. J.
Mulder
,
Philips Res. Rep.
22
,
142
(
1967
).
27.
T.
Stübinger
and
W.
Brütting
,
J. Appl. Phys.
90
,
3632
(
2001
).
28.
D. M.
Adams
,
J.
Kerimo
,
D. B.
O'Connor
, and
P. F.
Barbara
,
J. Phys. Chem. A
103
,
10138
(
1999
).
29.
B. A.
Gregg
,
J.
Sprague
, and
M. W.
Peterson
,
J. Phys. Chem. B
101
,
5362
(
1997
).
30.
V.
Bulović
and
S.
Forrest
,
Chem. Phys.
210
,
13
(
1996
).
31.
D.
Kurrle
and
J.
Pflaum
,
Appl. Phys. Lett.
92
,
133306
(
2008
).
32.
T.
Kietzke
,
Adv. OptoElectron.
2007
,
40285
(
2007
).
33.
C.
Quarti
,
D.
Fazzi
, and
M.
Tommasini
,
Chem. Phys. Lett.
496
,
284
(
2010
).
34.
M.
Galanin
and
S.
Khan-Magometova
,
J. Lumin.
18–19
(
Part 1
),
37
(
1979
).
35.
J.
Aaviksoo
,
J. Lumin.
48–49
(
Part 1
),
57
(
1991
).
36.
S.
Brazovskii
and
N.
Kirova
,
Chem. Soc. Rev.
39
,
2453
(
2010
).
37.
A. K.
Tripathi
and
J.
Pflaum
,
Appl. Phys. Lett.
89
,
082103
(
2006
).
38.
A. K.
Topczak
,
T.
Roller
,
B.
Engels
,
W.
Brütting
, and
J.
Pflaum
, arXiv:1207.1036 [cond-mat.mtrl-sci] (
2012
).
39.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
, 3rd ed. (
Wiley-VCH
,
2011
).
40.
41.
K. F.
Wong
,
B.
Bagchi
, and
P. J.
Rossky
,
J. Phys. Chem. A
108
,
5752
(
2004
).
42.
E.
Hennebicq
,
G.
Pourtois
,
G. D.
Scholes
,
L. M.
Herz
,
D. M.
Russell
,
C.
Silva
,
S.
Setayesh
,
A. C.
Grimsdale
,
K.
Müllen
,
J.-L.
Brédas
, and
D.
Beljonne
,
J. Am. Chem. Soc.
127
,
4744
(
2005
).
43.
F.
Spano
and
S.
Siddiqui
,
Chem. Phys. Lett.
314
,
481
(
1999
).
44.
M.
Malagoli
,
V.
Coropceanu
,
D. A.
da Silva Filho
, and
J. L.
Brédas
,
J. Chem. Phys.
120
,
7490
(
2004
).
45.
F.
Duschinsky
,
Acta Physicochim. URSS
7
,
551
(
1937
).
46.
E. S.
Medvedev
and
V. I.
Osherov
,
Radiationless Transitions in Polyatomic Molecules
,
Springer Series in Chemical Physics
Vol.
57
(
Springer
,
1995
).
47.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J.-L.
Brédas
,
Chem. Rev.
107
,
926
(
2007
).
49.
A. V.
Myshlyavtsev
,
A. A.
Stepanov
,
C.
Uebing
, and
V. P.
Zhdanov
,
Phys. Rev. B
52
,
5977
(
1995
).
50.
V.
Stehr
,
J.
Pfister
,
R. F.
Fink
,
B.
Engels
, and
C.
Deibel
,
Phys. Rev. B
83
,
155208
(
2011
).
51.
Z. G.
Yu
,
D. L.
Smith
,
A.
Saxena
,
R. L.
Martin
, and
A. R.
Bishop
,
Phys. Rev. Lett.
84
,
721
(
2000
).
52.
Z. G.
Yu
,
D. L.
Smith
,
A.
Saxena
,
R. L.
Martin
, and
A. R.
Bishop
,
Phys. Rev. B
63
,
085202
(
2001
).
53.
54.
M.
von Smoluchowski
,
Ann. Phys.
326
,
756
(
1906
).
55.
V.
Stehr
,
R. F.
Fink
,
B.
Engels
, and
C.
Deibel
, “
Singlet exciton diffusion in organic crystals based on Marcus transfer rates
,”
J. Chem. Theory Comput.
(submitted).
56.
R. A.
Marcus
,
J. Chem. Phys.
129
,
966
(
1956
).
57.
R. A.
Marcus
,
Rev. Mod. Phys.
65
,
599
(
1993
).
58.
H.
Houili
,
E.
Tutiš
,
I.
Batistić
, and
L.
Zuppiroli
,
J. Appl. Phys.
100
,
033702
(
2006
).
59.
60.
R.
Fink
,
J.
Pfister
,
A.
Schneider
,
H.
Zhao
, and
B.
Engels
,
Chem. Phys.
343
,
353
(
2008
).
61.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
62.
“TURBOMOLE V6.2, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com,”
2010
.
63.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
64.
A.
Hellweg
,
S. A.
Grün
, and
C.
Hättig
,
Phys. Chem. Chem. Phys.
10
,
4119
(
2008
).
65.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
66.
C.
Hättig
and
F.
Weigend
,
J. Chem. Phys.
113
,
5154
(
2000
).
67.
C.
Hättig
,
J. Chem. Phys.
118
,
7751
(
2003
).
68.
A.
Köhn
and
C.
Hättig
,
J. Chem. Phys.
119
,
5021
(
2003
).
69.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
70.
M.
Kasha
,
Discuss. Faraday Soc.
9
,
14
(
1950
).
71.
72.
W.
Liu
,
V.
Settels
,
P. H. P.
Harbach
,
A.
Dreuw
,
R. F.
Fink
, and
B.
Engels
,
J. Comput. Chem.
32
,
1971
(
2011
).
73.
V.
Settels
,
W.
Liu
,
J.
Pflaum
,
R. F.
Fink
, and
B.
Engels
,
J. Comput. Chem.
33
,
1544
(
2012
).
74.
A.
Schubert
,
V.
Settels
,
W.
Liu
,
F.
Würthner
,
C.
Meier
,
R. F.
Fink
,
S.
Schindlbeck
,
S.
Lochbrunner
,
B.
Engels
, and
V.
Engel
,
J. Phys. Chem. Lett.
4
,
792
(
2013
).
75.
H.
Yamagata
,
J.
Norton
,
E.
Hontz
,
Y.
Olivier
,
D.
Beljonne
,
J. L.
Brédas
,
R. J.
Silbey
, and
F. C.
Spano
,
J. Chem. Phys.
134
,
204703
(
2011
).
76.
L.
Sebastian
,
G.
Weiser
,
G.
Peter
, and
H.
Bässler
,
Chem. Phys.
75
,
103
(
1983
).
77.
D. L.
Dexter
,
J. Chem. Phys.
21
,
836
(
1953
).
78.
J. N.
Murrell
and
J.
Tanaka
,
J. Mol. Phys.
7
,
363
(
1963
).
79.
B. P.
Krueger
,
G. D.
Scholes
, and
G. R.
Fleming
,
J. Phys. Chem. B
102
,
5378
(
1998
).
80.
J.
Schirmer
,
Phys. Rev. A
26
,
2395
(
1982
).
81.
C. W.
Padgett
,
H. D.
Arman
, and
W. T.
Pennington
,
Cryst. Growth Des.
7
,
367
(
2007
).
82.
C. P.
Brock
and
J. D.
Dunitz
,
Acta Cryst. B
46
,
795
(
1990
).
83.
J.
Ferguson
,
L. W.
Reeves
, and
W. G.
Schneider
,
Can. J. Chem.
35
,
1117
(
1957
).
84.
H. B.
Klevens
and
J. R.
Platt
,
J. Chem. Phys.
17
,
470
(
1949
).
85.
W.
Kutzelnigg
,
Einführung in die Theoretische Chemie
, 2nd ed. (
Wiley-VCH
,
1993
).
86.
J.
Speight
and
N. A.
Lange
,
Lange's Handbook of Chemistry
, 16th ed. (
McGraw-Hill
,
New York
,
2005
).
87.
M. D.
Galanin
and
Z. A.
Chizhikova
,
Opt. Spectrosc.
11
,
143
(
1961
).
88.
J. B.
Birks
,
T. A.
King
, and
I. H.
Munro
,
Proc. Phys. Soc.
80
,
355
(
1962
).
89.
F.
Heisel
,
J. A.
Miehe
,
M.
Schott
, and
B.
Sipp
,
Mol. Cryst. Liq. Cryst.
41
,
251
(
1978
).
90.
E.
Di Donato
,
R. P.
Fornari
,
S.
Di Motta
,
Y.
Li
,
Z.
Wang
, and
F.
Negri
,
J. Phys. Chem. B
114
,
5327
(
2010
).
91.
S.
Di Motta
,
M.
Siracusa
, and
F.
Negri
,
J. Phys. Chem. C
115
,
20754
(
2011
).
92.
W. R.
Lambert
,
P. M.
Felker
,
J. A.
Syage
, and
A. H.
Zewail
,
J. Chem. Phys.
81
,
2195
(
1984
).
93.
R. P.
Steiner
and
J.
Michl
,
J. Am. Chem. Soc.
100
,
6861
(
1978
).
94.
A.
Bergman
and
J.
Jortner
,
Chem. Phys. Lett.
15
,
309
(
1972
).
95.
N.
Karl
,
H.
Rohrbacher
, and
D.
Siebert
,
Phys. Status Solidi A
4
,
105
(
1971
).
96.
R. W.
Munn
,
J. R.
Nicholson
,
H. P.
Schowob
, and
D. F.
Williams
,
J. Chem. Phys.
58
,
3828
(
1973
).
97.
D.
Donati
and
J. O.
Williams
,
Mol. Cryst. Liq. Cryst.
44
,
23
(
1978
).
98.
M. D.
Cohen
,
E.
Klein
, and
Z.
Ludmer
,
Chem. Phys. Lett.
37
,
611
(
1976
).
99.
J. B.
Birks
,
Proc. Phys. Soc.
79
,
494
(
1962
).
100.
J. B.
Birks
,
Mol. Cryst. Liq. Cryst.
28
,
117
(
1974
).
101.
R. G.
Kepler
and
R. E.
Merrifield
,
J. Chem. Phys.
40
,
1173
(
1964
).
102.
J. S.
Meth
,
C.
Marshall
, and
M.
Fayer
,
Solid State Commun.
74
,
281
(
1990
).
You do not currently have access to this content.