From scaling arguments and numerical simulations, we investigate the properties of the generalized elastic model (GEM) that is used to describe various physical systems such as polymers, membranes, single-file systems, or rough interfaces. We compare analytical and numerical results for the subdiffusion exponent β characterizing the growth of the mean squared displacement ⟨(δh)2⟩ of the field h described by the GEM dynamic equation. We study the scaling properties of the qth order moments ⟨|δh|q⟩ with time, finding that the interface fluctuations show no intermittent behavior. We also investigate the ergodic properties of the process h in terms of the ergodicity breaking parameter and the distribution of the time averaged mean squared displacement. Finally, we study numerically the driven GEM with a constant, localized perturbation and extract the characteristics of the average drift for a tagged probe.

1.
P.
Meakin
,
Fractals, Scaling and Growth far from Equilibrium
(
Cambridge University Press
,
Cambridge, UK
,
1998
).
2.
A. L.
Barabśi
and
H. E.
Stanley
,
Fractal Concepts in Surface Growth
(
Cambridge University Press
,
Cambridge, UK
,
1995
).
3.
R.
Granek
,
J. Phys. II
7
,
1761
(
1997
);
R.
Granek
and
J.
Klafter
,
Europhys. Lett.
56
,
15
(
2001
).
4.
L.
Lizana
,
T.
Ambjörnsson
,
A.
Taloni
,
E.
Barkai
, and
M. A.
Lomholt
,
Phys. Rev. E
81
,
051118
(
2010
);
M. A.
Lomholt
,
L.
Lizana
, and
T.
Ambjörnsson
,
J. Chem. Phys.
134
,
045101
(
2011
).
[PubMed]
5.
A. G.
Zilman
and
R.
Granek
,
Chem. Phys.
284
,
195
(
2002
).
6.
E.
Helfer
,
S.
Harlepp
,
L.
Bourdieu
,
J.
Robert
,
F.
MacKintosh
, and
D.
Chatenay
,
Phys. Rev. Lett.
85
,
457
(
2000
).
7.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford, UK
,
1986
).
8.
F.
Amblard
,
A. C.
Maggs
,
B.
Yurke
,
A. N.
Pargellis
, and
S.
Leibler
,
Phys. Rev. Lett.
77
,
4470
(
1996
).
9.
R.
Everaers
,
F.
Jülicher
,
A.
Ajdari
, and
A.
Maggs
,
Phys. Rev. Lett.
82
,
3717
(
1999
).
10.
A.
Caspi
,
M.
Elbaum
,
R.
Granek
,
A.
Lachish
, and
D.
Zbaida
,
Phys. Rev. Lett.
80
,
1106
(
1998
).
11.
S.
Buldyrev
,
A.-L.
Barabási
,
F.
Caserta
,
S.
Havlin
,
H.
Stanley
, and
T.
Vicsek
,
Phys. Rev. A
45
,
R8313
(
1992
).
12.
J.
Nissen
,
K.
Jacobs
, and
J. O.
Rädler
,
Phys. Rev. Lett.
86
,
1904
(
2001
).
13.
S.
Bustingorry
,
L. F.
Cugliandolo
, and
D.
Dominguez
,
Phys. Rev. Lett.
96
,
027001
(
2006
);
[PubMed]
U.
Dobramysl
,
H.
Assi
,
M.
Pleimling
, and
U. C.
Täuber
,
Euro. Phys. J. B
86
,
228
(
2013
).
14.
A.
Brú
,
J. M.
Pastor
,
I.
Fernaud
,
I.
Brú
,
S.
Melle
, and
C.
Berenguer
,
Phys. Rev. Lett.
81
,
4008
(
1998
).
15.
I.
Podlubny
,
Fractional Differential Equations
(
Academic Press
,
London, UK
,
1999
).
16.
N. G.
van Kampen
,
Stochastic Processes in Chemistry and Physics
(
North Holland
,
Amsterdam
,
1981
).
17.
A.
Taloni
,
A.
Chechkin
, and
J.
Klafter
,
Phys. Rev. Lett.
104
,
160602
(
2010
);
[PubMed]
A.
Taloni
,
A.
Chechkin
, and
J.
Klafter
,
Phys. Rev. E
82
,
061104
(
2010
).
18.
A.
Taloni
,
A.
Chechkin
, and
J.
Klafter
,
Europhys. Lett.
97
,
30001
(
2012
).
19.
A.
Taloni
,
A.
Chechkin
, and
J.
Klafter
,
Phys. Rev. E
84
,
021101
(
2011
).
20.
A.
Taloni
,
A.
Chechkin
, and
J.
Klafter
,
Math. Model. Nat. Phenom.
8
,
127
(
2013
).
21.
In the present work the exponent β corresponds to β/2 from Taloni et al.c17 c18 c19 c20
22.
L. C. E.
Struik
, in
Physical Aging in Amorphous Polymers and Other Materials
(
Elsevier Amsterdam
,
The Netherlands
,
1978
), Vol.
106
.
23.
J.-P.
Bouchaud
and
A.
Georges
,
Phys. Rep.
195
,
127
(
1990
).
24.
R.
Metzler
and
J.
Klafter
,
Phys. Rep.
339
,
1
(
2000
);
R.
Metzler
and
J.
Klafter
,
J. Phys. A
37
,
R161
(
2004
).
25.
B.
Fourcade
,
J. Phys. I
2
,
1705
(
1992
).
26.
L.
Cugliandolo
and
J.
Kurchan
,
Philos. Mag. B
71
,
501
(
1995
).
27.
C.
Monthus
and
J.-P.
Bouchaud
,
J. Phys. A
29
,
3847
(
1996
).
28.
B.
Rinn
,
P.
Maass
, and
J.-P.
Bouchaud
,
Phys. Rev. Lett.
84
,
5403
(
2000
).
29.
30.
G.
Bel
and
E.
Barkai
,
Phys. Rev. Lett.
94
,
240602
(
2005
).
31.
A.
Rebenshtok
and
E.
Barkai
,
Phys. Rev. Lett.
99
,
210601
(
2007
);
[PubMed]
A.
Rebenshtok
and
E.
Barkai
,
J. Stat. Phys.
133
,
565
(
2008
).
32.
J. H. P.
Schulz
,
E.
Barkai
, and
R.
Metzler
,
Phys. Rev. Lett.
110
,
020602
(
2013
).
33.
Y.
He
,
S.
Burov
,
R.
Metzler
, and
E.
Barkai
,
Phys. Rev. Lett.
101
,
058101
(
2008
);
[PubMed]
A.
Lubelski
,
I. M.
Sokolov
, and
J.
Klafter
,
Phys. Rev. Lett.
100
,
250602
(
2008
);
[PubMed]
S. M.
Rytov
,
Yu. A.
Kravtsov
, and
V. I.
Tatarskii
,
Principles of Statistical Radiophysics 1: Elements of Random Process Theory
(
Springer
,
Heidelberg
,
1987
).
34.
S.
Burov
,
J.-H.
Jeon
,
R.
Metzler
, and
E.
Barkai
,
Phys. Chem. Chem. Phys.
13
,
1800
(
2011
);
[PubMed]
J.-H.
Jeon
,
E.
Barkai
, and
R.
Metzler
,
J. Chem. Phys.
139
,
121916
(
2013
);
[PubMed]
E.
Barkai
,
Y.
Garini
, and
R.
Metzler
,
Phys. Today
65
(
8
),
29
(
2012
).
35.
S. M. A.
Tabei
,
S.
Burov
,
H. Y.
Kim
,
A.
Kuznetsov
,
T.
Huynh
,
J.
Jureller
,
L. H.
Philipson
,
A. R.
Dinner
, and
N. F.
Scherer
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
4911
(
2013
);
[PubMed]
A. V.
Weigel
,
B.
Simon
,
M. M.
Tamkun
, and
D.
Krapf
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
6438
(
2011
);
[PubMed]
J.-H.
Jeon
,
V.
Tejedor
,
S.
Burov
,
E.
Barkai
,
C.
Selhuber-Unkel
,
K.
Berg-Sørensen
,
L.
Oddershede
, and
R.
Metzler
,
Phys. Rev. Lett.
106
,
048103
(
2011
);
[PubMed]
I. Y.
Wong
,
M. L.
Gardel
,
D. R.
Reichman
,
E. R.
Weeks
,
M. T.
Valentine
,
A. R.
Bausch
, and
D. A.
Weitz
,
Phys. Rev. Lett.
92
,
178101
(
2004
);
[PubMed]
Q.
Xu
,
L.
Feng
,
R.
Sha
,
N. C.
Seeman
, and
P. M.
Chaikin
,
Phys. Rev. Lett.
106
,
228102
(
2011
).
[PubMed]
36.
A. G.
Cherstvy
,
A. V.
Chechkin
, and
R.
Metzler
,
New J. Phys.
15
,
083039
(
2013
);
A. G.
Cherstvy
and
R.
Metzler
,
Phys. Chem. Chem. Phys.
15
,
20220
(
2013
).
[PubMed]
37.
M. A.
Lomholt
,
L.
Lizana
,
R.
Metzler
, and
T.
Ambjörnsson
,
Phys. Rev. Lett.
110
,
208301
(
2013
).
38.
W.
Deng
, and
E.
Barkai
,
Phys. Rev. E
79
,
011112
(
2009
);
J.-H.
Jeon
and
R.
Metzler
,
Phys. Rev. E
81
,
021103
(
2010
).
39.
J.
Kursawe
,
J. H. P.
Schulz
, and
R.
Metzler
,
Phys. Rev. E
88
,
062124
(
2013
);
J-.H.
Jeon
,
N.
Leijnse
,
L.
Oddershede
, and
R.
Metzler
,
New J. Phys.
15
,
045011
(
2013
);
J.-H.
Jeon
and
R.
Metzler
,
Phys. Rev. E
85
,
021147
(
2012
).
40.
S. G.
Samko
,
A. A.
Kilbas
, and
O. O. I.
Marichev
,
Fractional Integrals and Derivatives
(
Gordon and Breach
,
New York
,
1993
).
41.
The relevance for taking α = d in case of local interactions and/or uncorrelated noise becomes clear when solving the starting equation (2) in Fourier space: one can get a solution for systems with local interaction by setting α = d in the corresponding long-ranged hydrodynamic expressions. This formal substitution, which is not intended as a limit, allows one to easily shift from non-local to local cases throughout the analysis. This issue is explained in Ref. 17 in more detail.
42.
Y.-K.
Yu
,
N.-N.
Pang
, and
T.
Halpin-Healy
,
Phys. Rev. E
50
,
5111
(
1994
).
43.
44.
N.-N.
Pang
and
W.-J.
Tzeng
,
Phys. Rev. E
82
,
031605
(
2010
).
45.
J.
Krug
,
H.
Kallabis
,
S.
Majumdar
,
S.
Cornell
,
A.
Bray
, and
C.
Sire
,
Phys. Rev. E
56
,
2702
(
1997
).
46.
S. N.
Majumdar
and
A. J.
Bray
,
Phys. Rev. Lett.
86
,
3700
(
2001
).
47.
A. A.
Kilbas
,
H. M.
Srivastava
, and
J. J.
Trujillo
,
Theory and Applications of Fractional Differential Equations
(
Elsevier
,
2006
), Vol.
204
.
48.
Q.
Yang
, “
Novel analytical and numerical methods for solving fractional dynamical systems
,” Ph.D. thesis,
Queensland University of Technology
, Australia,
2010
, see http://eprints.qut.edu.au/35750.
49.
A. I.
Saichev
and
G. M.
Zaslavsky
,
Chaos
7
,
753
(
1997
).
50.
M.
Ilic
,
F.
Liu
,
I.
Turner
, and
V.
Anh
,
Fractl. Calc. Appl. Anal.
8
,
323
(
2005
);
M.
Ilic
,
F.
Liu
,
I.
Turner
, and
V.
Anh
,
Fractl. Calc. Appl. Anal.
9
,
333
(
2006
).
51.
A.
Zoia
,
A.
Rosso
, and
M.
Kardar
,
Phys. Rev. E
76
,
021116
(
2007
).
52.
The choice a = 1 is usual for such simulations studies if only the time step δt is sufficiently small, compare, for instance, Ref. 53. Our simulations results show no dependence on the lattice constant.
53.
J. G.
Amar
and
F.
Family
,
Phys. Rev. A
41
,
3399
(
1990
).
54.
H.-O.
Peitgen
,
D.
Saupe
,
M. F.
Barnsley
,
Y.
Fisher
, and
M.
McGuire
,
The Science of Fractal Images
(
Springer
,
New York
,
1988
).
55.
M.
Ausloos
and
D.
Berman
,
Proc. R. Soc. London A
400
,
331
(
1985
).
56.
H.
Hamzehpour
and
M.
Sahimi
,
Phys. Rev. E
73
,
056121
(
2006
).
57.
H. A.
Makse
,
S.
Havlin
,
M.
Schwartz
, and
H. E.
Stanley
,
Phys. Rev. E
53
,
5445
(
1996
).
58.
M. S.
Taqqu
and
G.
Samorodnisky
,
Stable Non-Gaussian Random Processes
(
Chapman and Hall
,
New-York
,
1994
).
59.
J.-H.
Jeon
and
R.
Metzler
,
J. Phys. A
43
,
252001
(
2010
).
You do not currently have access to this content.