We develop statistical mechanical models amenable to analytic treatment for the dissociative adsorption of O2 at hollow sites on fcc(100) metal surfaces. The models incorporate exclusion of nearest-neighbor pairs of adsorbed O. However, corresponding simple site-blocking models, where adsorption requires a large ensemble of available sites, exhibit an anomalously fast initial decrease in sticking. Thus, in addition to blocking, our models also incorporate more facile adsorption via orientational steering and funneling dynamics (features supported by ab initio Molecular Dynamics studies). Behavior for equilibrated adlayers is distinct from those with finite adspecies mobility. We focus on the low-temperature limited-mobility regime where analysis of the associated master equations readily produces exact results for both short- and long-time behavior. Kinetic Monte Carlo simulation is also utilized to provide a more complete picture of behavior. These models capture both the initial decrease and the saturation of the experimentally observed sticking versus coverage, as well as features of non-equilibrium adlayer ordering as assessed by surface-sensitive diffraction.

1.
C. R.
Brundle
,
J.
Behm
, and
J. A.
Barker
,
J. Vac. Sci. Technol. A
2
,
1038
(
1984
).
2.
C. R.
Brundle
,
J. Vac. Sci. Technol. A
3
,
1468
(
1985
).
3.
A. F.
Voter
,
M. T.
Paffett
, and
C. T.
Campbell
,
J. Vac. Sci. Technol. A
4
,
1342
(
1986
).
4.
S.-L.
Chang
and
P. A.
Thiel
,
Phys. Rev. Lett.
59
,
296
(
1987
).
5.
A.
Zangwill
,
Physics at Surfaces
(
Cambridge University Press
,
Cambridge
,
1988
).
6.
T.
Zambelli
,
J. V.
Barth
,
J.
Wintterlin
, and
G.
Ertl
,
Nature (London)
390
,
495
(
1997
).
7.
R. B.
Getman
,
W. F.
Schneider
,
A. D.
Smeltz
,
W. N.
Delgass
, and
R. H.
Ribeiro
,
Phys. Rev. Lett.
102
,
076101
(
2009
).
8.
D. J.
Miller
,
H.
Oberg
,
L.-A.
Naslund
,
T.
Anniyev
,
H.
Ogasawara
,
L. G. M.
Petterson
, and
A.
Nilsson
,
J. Chem. Phys.
133
,
224701
(
2010
).
9.
J.-S.
McEwen
,
J. M.
Bray
,
C.
Wu
, and
W. F.
Schneider
,
Phys. Chem. Chem. Phys.
14
,
16677
(
2012
).
10.
D.-J.
Liu
and
J. W.
Evans
,
Prog. Surf. Sci.
88
,
393
521
(
2013
).
11.
R. A.
van Santen
and
J. W.
Niemantsverdriet
,
Chemical Kinetics and Catalysis
(
Plenum
,
New York
,
1995
).
12.
J. W.
Evans
,
J. Chem. Phys.
87
,
3038
(
1987
).
13.
D.-J.
Liu
and
J. W.
Evans
,
Surf. Sci.
563
,
13
(
2004
).
14.
E. W.
James
,
C.
Song
, and
J. W.
Evans
,
J. Chem. Phys.
111
,
6579
(
1999
).
15.
Y.
Suchorski
,
J.
Beben
,
E. W.
James
,
J. W.
Evans
, and
R.
Imbihl
,
Phys. Rev. Lett.
82
,
1907
(
1999
).
16.
D.-J.
Liu
and
J. W.
Evans
,
Phys. Rev. Lett.
84
,
955
(
2000
).
17.
D.-J.
Liu
and
J. W.
Evans
,
J. Chem. Phys.
117
,
7319
(
2002
).
18.
M.
Pineda
,
R.
Imbihl
, and
L.
Schimansky-Geier
,
J. Chem. Phys.
124
,
044701
(
2006
).
19.
M.
Pineda
,
L.
Schimansky-Geier
, and
R.
Imbihl
,
Phys. Rev. E
75
,
061107
(
2007
).
20.
D.-J.
Liu
and
J. W.
Evans
,
J. Chem. Phys.
124
,
154705
(
2006
).
21.
J. W.
Evans
,
Rev. Mod. Phys.
65
,
1281
(
1993
).
22.
J. G.
Kirkwood
,
J. Chem. Phys.
3
,
300
(
1935
).
23.
A.
Singer
,
J. Chem. Phys.
121
,
3657
(
2004
).
24.
J. T.
Stuckless
,
C. E.
Wartnaby
,
N.
Al-Sarraf
,
S. J. B.
Dixon-Warren
,
M.
Kovar
, and
D. A.
King
,
J. Chem. Phys.
106
,
2012
(
1997
).
25.
S.-L.
Chang
and
P. A.
Thiel
,
J. Chem. Phys.
88
,
2071
(
1988
).
26.
R.
Kose
,
W. A.
Brown
, and
D. A.
King
,
Surf. Sci.
402–404
,
856
(
1998
).
27.
J.
Meyer
and
K.
Reuter
,
New J. Phys.
13
,
085010
(
2011
).
28.
C.
Carbogno
,
A.
Gross
,
J.
Meyer
, and
K.
Reuter
, in
Dynamics of Gas-Surface Interactions: Atomic-level Description of Elementary Processes
,
Springer Series in Surface Science
Vol.
50
, edited by
R. D.
Muino
and
H. F.
Busnengo
(
Springer
,
Berlin
,
2013
).
29.
D.-J.
Liu
and
J. W.
Evans
,
Phys. Rev. B
89
,
205406
.
30.
A.
Eichler
and
J.
Hafner
,
Phys. Rev. B
57
,
10110
(
1998
).
31.
J. W.
Evans
,
P. A.
Thiel
, and
M. C.
Bartelt
,
Surf. Sci. Rep.
61
,
1
128
(
2006
).
32.
J.
Behler
,
B.
Delley
,
S.
Lorentz
,
K.
Reuter
, and
M.
Scheffler
,
Phys. Rev. Lett.
94
,
036104
(
2005
).
33.
F.
Libisch
,
C.
Huang
,
P.
Lioa
,
M.
Pavone
, and
E. A.
Carter
,
Phys. Rev. Lett.
109
,
198303
(
2012
).
34.
D. S.
Gaunt
and
M. E.
Fisher
,
J. Chem. Phys.
43
,
2840
(
1965
).
35.
One has Ld = √2θOd. Here ρd = P1 − P2NN is a measure of the diagonal c(2 × 2) domain boundary density taken as the probability of 2NN occupied-unoccupied pairs.
36.
One has Lp = 2θOp. Here ρp is a measure of the p(2 × 2) domain boundary density which is taken as the probability of linear triples with one occupied (x) and two unoccupied (o) sites, i.e., ρp = Pxoo = Poo – Pooo = PNN – Pooo. Note that Pooo + Poxo = Po-o = P3NN, and Poxo = Px = 1 − P1, so one has that Pxoo = P1 – P3NN.
37.
G.
Kamieniarz
and
H. J. W.
Bloete
,
J. Phys. A
26
,
6679
(
1993
).
38.
R.
Dickman
,
J.-S.
Wang
, and
I.
Jensen
,
J. Chem. Phys.
94
,
8252
(
1991
).
39.
B. J.
Brosilow
,
R. M.
Ziff
, and
R. D.
Vigil
,
Phys. Rev. A
43
,
631
(
1991
).
40.
S.-L.
Chang
,
D. E.
Sanders
,
J. W.
Evans
, and
P. A.
Thiel
, in
Structure of Surfaces II
, edited by
J. F.
van der Veen
and
M. A.
van Hove
(
Springer
,
Berlin
,
1988
), p.
231
.
41.
E. W.
James
,
D.-J.
Liu
, and
J. W.
Evans
,
J. Coll. Surf. A
165
,
241
(
2000
).
42.
P.
Kisliuk
,
J. Phys. Chem. Solids
3
,
95
(
1957
);
P.
Kisliuk
,
J. Phys. Chem. Solids
5
,
78
(
1958
).
43.
R. H. P.
Gasser
and
E. B.
Smith
,
Chem. Phys. Lett.
1
,
457
(
1967
).
44.
G.
Kresse
and
J.
Furthmueller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
45.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
46.
P. E.
Bloechl
,
Phys. Rev. B
50
,
17953
(
1994
).
47.
J.
Neugebauer
and
M.
Scheffler
,
Phys. Rev. B
46
,
16067
(
1992
).
48.
49.
P. J.
Flory
,
J. Am. Chem. Soc.
61
,
1518
(
1939
).
You do not currently have access to this content.