Molecular dynamics simulations were used to study relaxation of a vibrationally excited C6F6* molecule in a N2 bath. Ab initio calculations were performed to develop N2-N2 and N2-C6F6 intermolecular potentials for the simulations. Energy transfer from “hot” C6F6 is studied versus the bath density (pressure) and number of bath molecules. For the large bath limit, there is no heating of the bath. As C6F6* is relaxed, the average energy of C6F6* is determined versus time, i.e., ⟨E(t)⟩, and for each bath density ⟨E(t)⟩ is energy dependent and cannot be fit by a single exponential. In the long-time limit C6F6 is fully equilibrated with the bath. For a large bath and low pressures, the simulations are in the fixed temperature, independent collision regime and the simulation results may be compared with gas phase experiments of collisional energy transfer. The derivative d[⟨E(t)⟩]/dt divided by the collision frequency ω of the N2 bath gives the average energy transferred from C6F6* per collision ⟨ΔEc⟩, which is in excellent agreement with experiment. For the ∼100–300 ps simulations reported here, energy transfer from C6F6* is to N2 rotation and translation in accord with the equipartition model, with no energy transfer to N2 vibration. The energy transfer dynamics from C6F6* is not statistically sensitive to fine details of the N2-C6F6 intermolecular potential. Tests, with simulation ensembles of different sizes, show that a relatively modest ensemble of only 24 trajectories gives statistically meaningful results.

1.
D. C.
Tardy
and
B. S.
Rabinovitch
,
Chem. Rev.
77
,
369
(
1977
).
2.
M.
Quack
and
J.
Troe
,
Gas Kinetics and Energy Transfer
(
The Chemical Society
,
London
,
1977
), Vol.
2
.
3.
H.
Hippler
and
J.
Troe
, in
Biomolecular Collisions
, edited by
M. N. R.
Ashfold
and
J. E.
Baggott
(
Royal Society of Chemistry
,
London,
1989
).
4.
I.
Oref
and
D. C.
Tardy
,
Chem. Rev.
90
,
1407
(
1990
).
5.
J. R.
Barker
and
B. M.
Toselli
,
Int. Rev. Phys. Chem.
12
,
305
(
1993
).
6.
G. W.
Flynn
,
C. S.
Paramenter
, and
A. M.
Wodtke
,
J. Phys. Chem.
100
,
12817
(
1996
).
7.
V.
Bernshtein
,
I.
Oref
, and
G.
Lendvay
,
J. Phys. Chem.
100
,
9738
(
1996
).
8.
V.
Bernshtein
and
I.
Oref
,
J. Chem. Phys.
108
,
3543
(
1998
).
9.
R. G.
Gilbert
,
J. Chem. Phys.
80
,
5501
(
1984
).
10.
N.
Date
,
W. L.
Hase
, and
R. G.
Gilbert
,
J. Phys. Chem.
88
,
5135
(
1984
).
11.
W. L.
Hase
,
N.
Date
,
L. B.
Bhuiyan
, and
D. G.
Buckowski
,
J. Phys. Chem.
89
,
2502
(
1985
).
12.
X.
Hu
and
W. L.
Hase
,
J. Phys. Chem.
92
,
4040
(
1988
).
13.
A. R.
Whyte
,
K. F.
Lim
,
R. G.
Gilbert
, and
W. L.
Hase
,
Chem. Phys. Lett.
152
,
377
(
1988
).
14.
N. J.
Brown
and
J. A.
Miller
,
J. Chem. Phys.
80
,
5568
(
1984
).
15.
M.
Bruehl
and
G. C.
Schatz
,
J. Chem. Phys.
92
,
6561
(
1990
).
16.
G.
Lendvay
and
G. C.
Schatz
,
J. Chem. Phys.
96
,
4356
(
1992
).
17.
M. L.
Strekalov
,
Chem. Phys. Lett.
431
,
1
(
2006
).
18.
R. A.
Bustos-Marún
,
E. A.
Coronado
, and
J. C.
Ferrero
,
J. Chem. Phys.
127
,
154305
(
2007
).
19.
R. G.
Gilbert
,
Aust. J. Chem.
48
,
1787
(
1995
).
20.
T.
Lenzer
,
K.
Luther
,
J.
Troe
,
R. G.
Gilbert
, and
K. F.
Lim
,
J. Chem. Phys.
103
,
626
(
1995
).
21.
T.
Lenzer
and
K.
Luther
,
J. Chem. Phys.
105
,
10944
(
1996
).
22.
V.
Bernshtein
and
I.
Oref
,
J. Chem. Phys.
106
,
7080
(
1997
).
23.
S. H.
Kable
and
A. E. W.
Knight
,
J. Phys. Chem. A
107
,
10813
(
2003
).
24.
K. F.
Lim
,
J. Chem. Phys.
100
,
7385
(
1994
).
25.
V.
Bernshtein
and
I.
Oref
,
J. Chem. Phys.
104
,
1958
(
1996
).
26.
K. F.
Lim
and
R. G.
Gilbert
,
J. Chem. Phys.
84
,
6129
(
1986
).
27.
K. F.
Lim
and
R. G.
Gilbert
,
J. Chem. Phys.
92
,
1819
(
1990
).
28.
D. L.
Clarke
,
I.
Oref
,
R. G.
Gilbert
, and
K. F.
Lim
,
J. Chem. Phys.
96
,
5983
(
1992
).
29.
D. L.
Clarke
and
R. G.
Gilbert
,
J. Phys. Chem.
96
,
8450
(
1992
).
30.
C.
Heidelbach
,
I. I.
Fedchenia
,
D.
Schwarzer
, and
J.
Schroeder
,
J. Chem. Phys.
108
,
10152
(
1998
).
31.
C.
Heidelbach
,
V. S.
Vikhrenko
,
D.
Schwarzer
, and
J.
Schroeder
,
J. Chem. Phys.
110
,
5286
(
1999
).
32.
M. J.
Rossi
,
J. R.
Pladziewicz
, and
J. R.
Barker
,
J. Chem. Phys.
78
,
6695
(
1983
).
33.
M. L.
Yerram
,
J. D.
Brenner
,
K. D.
King
, and
J. R.
Barker
,
J. Phys. Chem.
94
,
6341
(
1990
).
34.
B. M.
Toselli
and
J. R.
Barker
,
Chem. Phys. Lett.
174
,
304
(
1990
).
35.
B. M.
Toselli
,
J. D.
Brenner
,
M. L.
Yerram
,
W. E.
Chin
,
K. D.
King
, and
J. R.
Barker
,
J. Chem. Phys.
95
,
176
(
1991
).
36.
B. M.
Toselli
and
J. R.
Barker
,
J. Chem. Phys.
95
,
8108
(
1991
).
37.
B. M.
Toselli
and
J. R.
Barker
,
J. Chem. Phys.
97
,
1809
(
1992
).
38.
J. R.
Barker
,
L. M.
Yoder
, and
K. D.
King
,
J. Phys. Chem. A
105
,
796
(
2001
).
39.
C. A.
Michaels
,
A. S.
Mullin
, and
G. W.
Flynn
,
J. Chem. Phys.
102
,
6682
(
1995
).
40.
C. A.
Michaels
,
Z.
Lin
,
A. S.
Mullin
,
H. C.
Tapalian
, and
G. W.
Flynn
,
J. Chem. Phys.
106
,
7055
(
1997
).
41.
M. C.
Wall
,
B. A.
Stewart
, and
A. S.
Mullin
,
J. Chem. Phys.
108
,
6185
(
1998
).
42.
M. C.
Wall
and
A. S.
Mullin
,
J. Chem. Phys.
108
,
9658
(
1998
).
43.
M.
Fraelich
,
M. S.
Elioff
, and
A. S.
Mullin
,
J. Phys. Chem. A
102
,
9761
(
1998
).
44.
M. C.
Wall
,
A. S.
Lemoff
, and
A. S.
Mullin
,
J. Phys. Chem. A
102
,
9101
(
1998
).
45.
M. S.
Elioff
,
M. C.
Wall
,
A. S.
Lemoff
, and
A. S.
Mullin
,
J. Chem. Phys.
110
,
5578
(
1999
).
46.
D. K.
Havey
,
Q.
Liu
,
Z.
Li
,
M.
Elioff
,
M.
Fang
,
J.
Neudel
, and
A. S.
Mullin
,
J. Phys. Chem. A.
111
,
2458
(
2007
).
47.
L.
Yuan
,
J.
Du
, and
A. S.
Mullin
,
J. Chem. Phys.
129
,
014303
(
2008
).
48.
J.
Du
,
L.
Yuan
,
S.
Hsieh
,
F.
Lin
, and
A. S.
Mullin
,
J. Phys. Chem. A
112
,
9396
(
2008
).
49.
Q.
Liu
,
D. K.
Havey
, and
A. S.
Mullin
,
J. Phys. Chem. A
112
,
9509
(
2008
).
50.
A. J.
Sedlacek
,
R. E.
Weston
, Jr.
, and
G. W.
Flynn
,
J. Chem. Phys.
94
,
6483
(
1991
).
51.
C. A.
Michaels
and
G. W.
Flynn
,
J. Chem. Phys.
106
,
3558
(
1997
).
52.
D. G.
Mitchell
,
A. M.
Johnson
,
J. A.
Johnson
,
K. A.
Judd
,
K.
Kim
,
M.
Mayhew
,
A. L.
Powell
, and
E. T.
Sevy
,
J. Phys. Chem. A
112
,
1157
(
2008
).
53.
H.
Hippler
,
J.
Troe
, and
H. J.
Weldenken
,
J. Chem. Phys.
78
,
5351
(
1983
);
H.
Hippler
,
J.
Troe
, and
H. J.
Weldenken
,
J. Chem. Phys.
78
,
6709
(
1983
);
H.
Hippler
,
J.
Troe
, and
H. J.
Weldenken
,
J. Chem. Phys.
78
,
6718
(
1983
);
H.
Hippler
,
J.
Troe
, and
H. J.
Weldenken
,
J. Chem. Phys.
80
,
1853
(
1984
).
54.
M.
Dumm
,
H.
Hippler
,
H. A.
Olschewski
,
J.
Troe
, and
J.
Willner
,
Z. Phys. Chem. N. F.
166
,
129
(
1990
).
55.
H.
Hippler
,
J.
Troe
, and
H. J.
Weldenken
,
Chem. Phys. Lett.
84
,
257
(
1981
).
56.
N.
Nakashima
and
K.
Yoshihara
,
J. Chem. Phys.
79
,
2727
(
1983
).
57.
T.
Ichimura
,
M.
Takahashi
, and
Y.
Mori
,
Chem. Phys.
114
,
111
(
1987
).
58.
T.
Ichimura
,
Y.
Mori
,
N.
Nakashima
, and
K.
Yoshihara
,
J. Chem. Phys.
83
,
117
(
1985
).
59.
T.
Ichimura
,
Y.
Mori
,
N.
Nakashima
, and
K.
Yoshihara
,
Chem. Phys. Lett.
104
,
533
(
1984
).
60.
C.-L.
Liu
,
H.-C.
Hsu
,
J.-J.
Lyu
, and
C.-K.
Ni
,
J. Chem. Phys.
124
,
054302
(
2006
).
61.
C.-L.
Liu
,
H.-C.
Hsu
,
Y. C.
Hsu
, and
C.-K.
Ni
,
J. Chem. Phys.
127
,
104311
(
2007
).
62.
C.-L.
Liu
,
H.-C.
Hsu
,
Y. C.
Hsu
, and
C.-K.
Ni
,
J. Chem. Phys.
128
,
124320
(
2008
).
63.
C.-L.
Liu
,
H.-C.
Hsu
, and
C.-K.
Ni
,
J. Chem. Phys.
128
,
164316
(
2008
).
64.
H.-C.
Hsu
,
M.-T.
Tsai
,
Y. A.
Dyakov
, and
C.-K.
Ni
,
J. Chem. Phys.
135
,
054311
(
2011
).
65.
H.-C.
Hsu
,
C.-L.
Liu
,
Y. C.
Hsu
, and
C.-K.
Ni
,
J. Chem. Phys.
129
,
044301
(
2008
).
66.
H. G.
Loehmannsroeben
and
K.
Luther
,
Chem. Phys. Lett.
144
,
473
(
1988
).
67.
U.
Grigoleit
,
T.
Lenzer
,
K.
Luther
,
M.
Muetzer
, and
A.
Takahara
,
Phys. Chem. Chem. Phys.
3
,
2191
(
2001
).
68.
E. R.
Waclawik
,
W. D.
Lawrance
, and
R. A. J.
Borg
,
J. Phys. Chem.
97
,
5798
(
1993
).
69.
R. A. J.
Borg
,
E. R.
Waclawik
,
Mudjijono
, and
W. D.
Lawrance
,
Chem. Phys. Lett.
218
,
320
(
1994
).
70.
T. C.
Brown
,
K. D.
King
,
J.-M.
Zellweger
, and
J. R.
Barker
,
Ber. Bunsen-Ges. Phys. Chem.
89
,
301
(
1985
).
71.
J.-M.
Zellweger
,
T. C.
Brown
, and
J. R.
Barker
,
J. Chem. Phys.
83
,
6251
(
1985
).
72.
J. R.
Gascooke
,
Z. T.
Alwahabi
,
K. D.
King
, and
W. D.
Lawrance
,
J. Phys. Chem. A
102
,
8505
(
1998
).
73.
R. M.
Whitnell
,
K. R.
Wilson
, and
J. T.
Hynes
,
J. Phys. Chem.
94
,
8625
(
1990
).
74.
R. M.
Whitnell
,
K. R.
Wilson
, and
J. T.
Hynes
,
J. Chem. Phys.
96
,
5354
(
1992
).
75.
P.
Valentini
and
T. E.
Schwartzentruber
,
Phys. Fluids
21
,
066101
(
2009
).
76.
P.
Valentini
and
T. E.
Schwartzentruber
,
J. Comput. Phys.
228
,
8766
(
2009
).
77.
P.
Valentini
,
C.
Zhang
, and
T. E.
Schwartzentruber
,
Phys. Fluids
24
,
106101
(
2012
).
78.
P.
Norman
,
P.
Valentini
, and
T. E.
Schwartzentruber
,
J. Comput. Phys.
247
,
153
(
2013
).
79.
P.
Valentini
,
P. A.
Tump
,
C.
Zhang
, and
T. E.
Schwartzentruber
,
J. Thermophys. Heat Transfer
27
,
226
(
2013
).
80.
A. V.
George
,
L. D.
Field
, and
T. W.
Hambley
,
The Essentials of Organic Chemistry
(
Prentice Hall
,
1996
).
81.
D.
Caraiman
,
G. K.
Koyanagi
, and
D. K.
Bohme
,
J. Phys. Chem. A
108
,
978
(
2004
).
82.
V.
Laporta
,
R.
Celiberto
, and
J. M.
Wadehra
,
Plasma Sources Sci. Technol.
21
,
055018
(
2012
).
83.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
84.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
85.
S.
Simon
,
M.
Duran
, and
J. J. J.
Dannenberg
,
Chem. Phys.
105
,
11024
(
1996
).
86.
K. E.
Riley
and
P.
Hobza
,
J. Phys. Chem. A
111
,
8257
(
2007
).
87.
G.
Vayner
,
Y.
Alexeev
,
J.
Wang
,
T. L.
Windus
, and
W. L.
Hase
,
J. Phys. Chem. A
110
,
3174
(
2006
).
88.
U.
Tasić
,
Y.
Alexeev
,
G.
Vayner
,
T. D.
Crawford
,
T. L.
Windus
, and
W. L.
Hase
,
Phys. Chem. Chem. Phys.
8
,
4678
(
2006
).
89.
S.
Krukowski
and
P.
Strak
,
J. Chem. Phys.
124
,
134501
(
2006
).
90.
P.
Strak
and
S.
Krukowski
,
J. Chem. Phys.
126
,
194501
(
2007
).
91.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
7410
(
1994
).
92.
J. M. C.
Marques
,
F. V.
Prudente
,
F. B.
Pereira
,
M. M.
Almeida
,
A. M.
Maniero
, and
C. E.
Fellows
,
J. Phys. B: At. Mol. Opt. Phys.
41
,
085103
(
2008
).
93.
J.
Wang
and
W. L.
Hase
,
J. Phys. Chem. B
109
,
8320
(
2005
).
94.
G. H.
Peslherbe
,
H.
Wang
, and
W. L.
Hase
,
Adv. Chem. Phys.
105
,
171
(
1999
).
95.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
The Molecular Theory of Gases and Liquids
(
John Wiley & Sons, Inc.
,
New York
,
1954
).
96.
W. L.
Hase
and
D. G.
Buckowski
,
Chem. Phys. Lett.
74
,
284
(
1980
).
97.
W. L.
Hase
 et al, “
VENUS96: A general chemical dynamics computer program
,”
QCPE Bull.
16
,
671
(
1996
).
98.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1996
).
99.
Y. L.
Yarnell
,
M. J.
Katz
,
R. G.
Wenzel
, and
S. H.
Koenig
,
Phys. Rev. A
7
,
2130
(
1973
).
100.
R. G.
Gilbert
and
S. C.
Smith
,
Theory of Unimolecular and Recombination Reactions
(
Blackwell Scientific Publication
,
1990
).
101.
O.
Meroueh
and
W. L.
Hase
,
J. Phys. Chem. A
103
,
3981
(
1999
).
102.
M.
Bruehl
and
G. C.
Schatz
,
J. Chem. Phys.
89
,
770
(
1988
).
103.
M.
Bruehl
and
G. C.
Schatz
,
J. Phys. Chem.
92
,
7223
(
1988
).
104.
G.
Lendvay
and
G. C.
Schatz
,
J. Phys. Chem.
95
,
8748
(
1991
).
105.
G.
Lendvay
and
G. C.
Schatz
,
J. Chem. Phys.
98
,
1034
(
1993
).
106.
G. C.
Schatz
and
G.
Lendvay
,
J. Chem. Phys.
106
,
3548
(
1997
).
You do not currently have access to this content.