The harmonic approximation to transition state theory simplifies the problem of calculating a chemical reaction rate to identifying relevant low energy saddle points in a chemical system. Here, we present a saddle point finding method which does not require knowledge of specific product states. In the method, the potential energy landscape is transformed into the square of the gradient, which converts all critical points of the original potential energy surface into global minima. A biasing term is added to the gradient squared landscape to stabilize the low energy saddle points near a minimum of interest, and destabilize other critical points. We demonstrate that this method is competitive with the dimer min-mode following method in terms of the number of force evaluations required to find a set of low-energy saddle points around a reactant minimum.

1.
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
).
2.
E.
Wigner
,
J. Chem. Phys.
5
,
720
(
1937
).
3.
C.
Wert
and
C.
Zener
,
Phys. Rev.
76
,
1169
(
1949
).
4.
G. H.
Vineyard
,
J. Phys. Chem. Solids
3
,
121
(
1957
).
5.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
), pp.
385
404
.
6.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
7.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
8.
W.
E
,
W.
Ren
, and
E.
Vanden-Eijnden
,
J. Chem. Phys.
126
,
164103
(
2007
).
9.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
10.
A.
Heyden
,
A. T.
Bell
, and
F. J.
Keil
,
J. Chem. Phys.
123
,
224101
(
2005
).
11.
J.
Kästner
and
P.
Sherwood
,
J. Chem. Phys.
128
,
014106
(
2008
).
12.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
Cambridge
,
1985
).
13.
L. J.
Munro
and
D. J.
Wales
,
Phys. Rev. B
59
,
3969
(
1999
).
14.
R.
Malek
and
N.
Mousseau
,
Phys. Rev. E
62
,
7723
(
2000
).
15.
R. A.
Olsen
,
G. J.
Kroes
,
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
,
J. Chem. Phys.
121
,
9776
(
2004
).
16.
G.
Henkelman
,
G.
Jóhannesson
, and
H.
Jónsson
, in
Progress on Theoretical Chemistry and Physics
, edited by
S.
Schwartz
(
Kluwer Academic
,
New York
,
2000
), pp.
269
299
.
17.
S.
Maeda
,
K.
Ohno
, and
K.
Morokuma
,
Phys. Chem. Chem. Phys.
15
,
3683
(
2013
).
18.
K.
Promislow
and
B.
Wetton
,
SIAM J. Appl. Math.
70
,
369
(
2009
).
19.
N.
Gavish
,
J.
Jones
,
Z.
Xu
,
A.
Christlieb
, and
K.
Promislow
,
Polymers
4
,
630
(
2012
).
20.
J. W.
McIver
and
A.
Komornicki
,
J. Am. Chem. Soc.
94
,
2625
(
1972
).
21.
G. M.
Torrie
and
G.
Valleau
,
J. Comput. Phys.
23
,
187
(
1977
).
22.
J. C.
Polanyi
and
W. H.
Wong
,
J. Chem. Phys.
51
,
1439
(
1969
).
23.
Two Gaussians were added to the LEPS potential. One Gaussian was centered at (2.021,−0.173) with standard deviations 0.1 and 0.35 in the x and y directions, respectively; the second was centered at (0.8, 2.0) with standard deviations of 0.5 and 0.7.
24.
A. F.
Voter
and
S. P.
Chen
,
Mat. Res. Soc. Symp. Proc.
82
,
175
(
1986
).
25.
J. B.
Maronsson
,
H.
Jónsson
, and
T.
Vegge
,
Phys. Chem. Chem. Phys.
14
,
2884
(
2012
).
You do not currently have access to this content.