The fundamental gap is a central quantity in the electronic structure of matter. Unfortunately, the fundamental gap is not generally equal to the Kohn-Sham gap of density functional theory (DFT), even in principle. The two gaps differ precisely by the derivative discontinuity, namely, an abrupt change in slope of the exchange-correlation energy as a function of electron number, expected across an integer-electron point. Popular approximate functionals are thought to be devoid of a derivative discontinuity, strongly compromising their performance for prediction of spectroscopic properties. Here we show that, in fact, all exchange-correlation functionals possess a derivative discontinuity, which arises naturally from the application of ensemble considerations within DFT, without any empiricism. This derivative discontinuity can be expressed in closed form using only quantities obtained in the course of a standard DFT calculation of the neutral system. For small, finite systems, addition of this derivative discontinuity indeed results in a greatly improved prediction for the fundamental gap, even when based on the most simple approximate exchange-correlation density functional – the local density approximation (LDA). For solids, the same scheme is exact in principle, but when applied to LDA it results in a vanishing derivative discontinuity correction. This failure is shown to be directly related to the failure of LDA in predicting fundamental gaps from total energy differences in extended systems.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
1989
).
4.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory
(
Springer Verlag
,
Berlin
,
1990
).
5.
A Primer in Density Functional Theory
,
Lectures in Physics
Vol.
620
, edited by
C.
Fiolhais
,
F.
Nogueira
, and
M. A.
Marques
(
Springer
,
2003
).
6.
E.
Engel
and
R.
Dreizler
,
Density Functional Theory: An Advanced Course
(
Springer
,
2011
).
7.
K.
Burke
,
J. Chem. Phys.
136
,
150901
(
2012
).
9.
N.
Argaman
and
G.
Makov
,
Am. J. Phys.
68
,
69
(
2000
).
10.
R.
Martin
,
Electronic Structure
(
Cambridge University Press
,
2004
).
12.
E.
Kaxiras
,
Atomic and Electronic Structure of Solids
(
Cambridge University Press
,
2003
).
13.
C. J.
Cramer
,
Essentials of Computational Chemistry: Theories and Models
(
Wiley
,
2005
).
14.
D.
Sholl
and
J.
Steckel
,
Density Functional Theory: A Practical Introduction
(
Wiley
,
2011
).
15.
S. G.
Louie
, in
Topics in Computational Materials Science
, edited by
C.
Fong
(
World Scientific
,
Singapore
,
1997
), pp.
96
142
.
16.
G. K.-L.
Chan
,
J. Chem. Phys.
110
,
4710
(
1999
).
17.
M.
Allen
and
D.
Tozer
,
Mol. Phys.
100
,
433
(
2002
).
18.
S.
Kümmel
and
L.
Kronik
,
Rev. Mod. Phys.
80
,
3
(
2008
).
19.
A. M.
Teale
,
F.
de Proft
, and
D. J.
Tozer
,
J. Chem. Phys.
129
,
044110
(
2008
).
20.
S.
Refaely-Abramson
,
R.
Baer
, and
L.
Kronik
,
Phys. Rev. B
84
,
075144
(
2011
).
21.
X.
Blase
,
C.
Attaccalite
, and
V.
Olevano
,
Phys. Rev. B
83
,
115103
(
2011
).
22.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
23.
M.
Levy
,
J. P.
Perdew
, and
V.
Sahni
,
Phys. Rev. A
30
,
2745
(
1984
).
24.
C.
Almbladh
and
U.
Von Barth
,
Phys. Rev. B
31
,
3231
(
1985
).
25.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. B
56
,
16021
(
1997
).
26.
R.
Godby
,
M.
Schlüter
, and
L.
Sham
,
Phys. Rev. B
36
,
6497
(
1987
).
27.
R.
Godby
,
M.
Schlüter
, and
L.
Sham
,
Phys. Rev. B
37
,
10159
(
1988
).
28.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
29.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
30.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
31.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
33
,
8800
(
1986
).
32.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
33.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
35.
Z.
Wu
and
R.
Cohen
,
Phys. Rev. B
73
,
235116
(
2006
).
36.
P.
Haas
,
F.
Tran
,
P.
Blaha
, and
K.
Schwarz
,
Phys. Rev. B
83
,
205117
(
2011
).
37.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. Lett.
51
,
1884
(
1983
).
38.
D. J.
Tozer
,
J. Chem. Phys.
119
,
12697
(
2003
).
39.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
,
J. Chem. Theory Comput.
8
,
1515
(
2012
).
40.
L.
Kronik
and
S.
Kümmel
, “
Gas-phase valence-electron photoemission spectroscopy using density functional theory
,” in
Topics of Current Chemistry: First Principles Approaches to Spectroscopic Properties of Complex Materials
(
Springer
,
2014
).
41.
S. Y.
Quek
,
H. J.
Choi
,
S. G.
Louie
, and
J. B.
Neaton
,
Nano Lett.
9
,
3949
(
2009
).
42.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
43.
D. J.
Tozer
,
J. Chem. Phys.
119
,
12697
(
2003
).
44.
T.
Stein
,
L.
Kronik
, and
R.
Baer
,
J. Am. Chem. Soc.
131
,
2818
(
2009
).
45.
B.
Kaduk
,
T.
Kowalczyk
, and
T.
Van Voorhis
,
Chem. Rev.
112
,
321
(
2012
).
46.
S.
Öğüt
,
J. R.
Chelikowsky
, and
S. G.
Louie
,
Phys. Rev. Lett.
79
,
1770
(
1997
).
47.
L.
Kronik
,
R.
Fromherz
,
E.
Ko
,
G.
Ganteför
, and
J. R.
Chelikowsky
,
Nat. Mater.
1
,
49
(
2002
).
48.
M.
Moseler
,
B.
Huber
,
H.
Häkkinen
,
U.
Landman
,
G.
Wrigge
,
M.
Astruc Hoffmann
, and
B. v.
Issendorff
,
Phys. Rev. B
68
,
165413
(
2003
).
49.
H.-C.
Weissker
,
J.
Furthmüller
, and
F.
Bechstedt
,
Phys. Rev. B
69
,
115310
(
2004
).
50.
E.
Kraisler
,
G.
Makov
, and
I.
Kelson
,
Phys. Rev. A
82
,
042516
(
2010
).
51.
U.
Argaman
,
G.
Makov
, and
E.
Kraisler
,
Phys. Rev. A
88
,
042504
(
2013
).
52.
S.
Sharma
,
J.
Dewhurst
,
N.
Lathiotakis
, and
E. K. U.
Gross
,
Phys. Rev. B
78
,
201103
(
2008
).
53.
M.
Chan
and
G.
Ceder
,
Phys. Rev. Lett.
105
,
196403
(
2010
).
54.
T.
Grabo
,
T.
Kreibich
, and
E. K. U.
Gross
,
Mol. Eng.
7
,
27
(
1997
).
55.
D.
Bylander
and
L.
Kleinman
,
Phys. Rev. B
54
,
7891
(
1996
).
56.
M.
Städele
,
J.
Majewski
,
P.
Vogl
, and
A.
Görling
,
Phys. Rev. Lett.
79
,
2089
(
1997
).
57.
M.
Städele
,
M.
Moukara
,
J.
Majewski
,
P.
Vogl
, and
A.
Görling
,
Phys. Rev. B
59
,
10031
(
1999
).
58.
R.
Magyar
,
A.
Fleszar
, and
E. K. U.
Gross
,
Phys. Rev. B
69
,
045111
(
2004
).
59.
M.
Grüning
,
A.
Marini
, and
A.
Rubio
,
J. Chem. Phys.
124
,
154108
(
2006
).
60.
M.
Grüning
,
A.
Marini
, and
A.
Rubio
,
Phys. Rev. B
74
,
161103
(
2006
).
61.
P.
Rinke
,
A.
Qteish
,
J.
Neugebauer
,
C.
Freysoldt
, and
M.
Scheffler
,
New J. Phys.
7
,
126
(
2005
).
62.
P.
Rinke
,
M.
Winkelnkemper
,
A.
Qteish
,
D.
Bimberg
,
J.
Neugebauer
, and
M.
Scheffler
,
Phys. Rev. B
77
,
075202
(
2008
).
63.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
124
,
221101
(
2006
).
64.
F.
Tran
,
P.
Blaha
, and
K.
Schwarz
,
J. Phys.: Condens. Matter
19
,
196208
(
2007
).
65.
F.
Tran
and
P.
Blaha
,
Phys. Rev. Lett.
102
,
226401
(
2009
).
66.
M.
Kuisma
,
J.
Ojanen
,
J.
Enkovaara
, and
T. T.
Rantala
,
Phys. Rev. B
82
,
115106
(
2010
).
67.
R.
Armiento
and
S.
Kümmel
,
Phys. Rev. Lett.
111
,
036402
(
2013
).
68.
A.
Laref
,
A.
Altujar
, and
S.
Luo
,
Eur. Phys. J. B
86
,
475
(
2013
).
69.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J.
Majewski
, and
M.
Levy
,
Phys. Rev. B
53
,
3764
(
1996
).
70.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
,
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
71.
S.
Picozzi
and
A.
Continenza
,
Phys. Rev. B
61
,
4677
(
2000
).
72.
C. B.
Geller
,
W.
Wolf
,
S.
Picozzi
,
A.
Continenza
, and
R.
Asahi
,
Appl. Phys. Lett.
79
,
368
(
2001
).
73.
C.
Stampfl
,
W.
Mannstadt
,
R.
Asahi
, and
A. J.
Freeman
,
Phys. Rev. B
63
,
155106
(
2001
).
74.
J.
Robertson
,
K.
Xiong
, and
S. J.
Clark
,
Phys. Status Solidi B
243
,
2054
(
2006
).
75.
B.
Lee
and
L.-W.
Wang
,
Phys. Rev. B
73
,
153309
(
2006
).
76.
R.
Dovesi
,
R.
Orlando
,
C.
Roetti
,
C.
Pisani
, and
V.
Saunders
,
Phys. Status Solidi B
217
,
63
(
2000
).
77.
T.
Bredow
and
A.
Gerson
,
Phys. Rev. B
61
,
5194
(
2000
).
78.
J.
Muscat
,
A.
Wander
, and
N. M.
Harrison
,
Chem. Phys. Lett.
342
,
397
(
2001
).
79.
F.
Corà
,
M.
Alfredsson
,
G.
Mallia
,
D. S.
Middlemiss
,
W. C.
Mackrodt
,
R.
Dovesi
, and
R.
Orlando
,
Struct. Bonding
113
,
171
(
2004
).
80.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Angyán
,
J. Chem. Phys.
124
,
154709
(
2006
).
81.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Angyán
,
J. Chem. Phys.
125
,
249901
(
2006
).
82.
P. G.
Moses
and
C. G.
Van de Walle
,
Appl. Phys. Lett.
96
,
021908
(
2010
).
83.
P. G.
Moses
,
M.
Miao
,
Q.
Yan
, and
C. G.
Van de Walle
,
J. Chem. Phys.
134
,
084703
(
2011
).
84.
N.
Sai
,
P. F.
Barbara
, and
K.
Leung
,
Phys. Rev. Lett.
106
,
226403
(
2011
).
85.
M.
Jain
,
J. R.
Chelikowsky
, and
S. G.
Louie
,
Phys. Rev. Lett.
107
,
216806
(
2011
).
86.
J. E.
Moussa
,
P. A.
Schultz
, and
J. R.
Chelikowsky
,
J. Chem. Phys.
136
,
204117
(
2012
).
87.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
, and
R. L.
Martin
,
J. Chem. Phys.
123
,
174101
(
2005
).
88.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
89.
I. C.
Gerber
,
J. G.
Angyán
,
M.
Marsman
, and
G.
Kresse
,
J. Chem. Phys.
127
,
054101
(
2007
).
90.
H. R.
Eisenberg
and
R.
Baer
,
Phys. Chem. Chem. Phys.
11
,
4674
(
2009
).
91.
S. J.
Clark
and
J.
Robertson
,
Phys. Status Solidi B
248
,
537
(
2011
).
92.
T. M.
Henderson
,
J.
Paier
, and
G. E.
Scuseria
,
Phys. Status Solidi B
248
,
767
(
2011
).
93.
L.
Schimka
,
J.
Harl
, and
G.
Kresse
,
J. Chem. Phys.
134
,
024116
(
2011
).
94.
M. J.
Lucero
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Phys.: Condens. Matter
24
,
145504
(
2012
).
95.
T.
Stein
,
H.
Eisenberg
,
L.
Kronik
, and
R.
Baer
,
Phys. Rev. Lett.
105
,
266802
(
2010
).
96.
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
M.
Jain
,
R.
Baer
,
J. B.
Neaton
, and
L.
Kronik
,
Phys. Rev. B
88
,
081204
(
2013
).
97.
X.
Zheng
,
A. J.
Cohen
,
P.
Mori-Sánchez
,
X.
Hu
, and
W.
Yang
,
Phys. Rev. Lett.
107
,
026403
(
2011
).
98.
X.
Zheng
,
T.
Zhou
, and
W.
Yang
,
J. Chem. Phys.
138
,
174105
(
2013
).
99.
A.
Svane
and
O.
Gunnarsson
,
Phys. Rev. Lett.
65
,
1148
(
1990
).
100.
R.
Heaton
,
J.
Harrison
, and
C.
Lin
,
Phys. Rev. B
28
,
5992
(
1983
).
101.
A.
Filippetti
and
N.
Spaldin
,
Phys. Rev. B
67
,
125109
(
2003
).
102.
V. I.
Anisimov
,
F.
Aryasetiawan
, and
A. I.
Lichtenstein
,
J. Phys.: Condens. Matter
9
,
767
(
1997
).
103.
M.
Cococcioni
and
S.
de Gironcoli
,
Phys. Rev. B
71
,
035105
(
2005
).
104.
A.
Janotti
,
D.
Segev
, and
C.
Van de Walle
,
Phys. Rev. B
74
,
045202
(
2006
).
105.
S.
Lany
and
A.
Zunger
,
Phys. Rev. B
78
,
235104
(
2008
).
106.
S.
Lany
and
A.
Zunger
,
Phys. Rev. B
80
,
085202
(
2009
).
107.
M.
Forti
,
P.
Alonso
,
P.
Gargano
, and
G.
Rubiolo
,
Proc. Mater. Sci.
1
,
230
(
2012
).
108.
A. N.
Andriotis
,
G.
Mpourmpakis
,
S.
Lisenkov
,
R. M.
Sheetz
, and
M.
Menon
,
Phys. Status Solidi B
250
,
356
(
2013
).
109.
I.
Dabo
,
A.
Ferretti
,
N.
Poilvert
,
Y.
Li
,
N.
Marzari
, and
M.
Cococcioni
,
Phys. Rev. B
82
,
115121
(
2010
).
110.
I.
Dabo
,
A.
Ferretti
,
C.-H.
Park
,
N.
Poilvert
,
Y.
Li
,
M.
Cococcioni
, and
N.
Marzari
,
Phys. Chem. Chem. Phys.
15
,
685
(
2013
).
111.
I.
Dabo
,
A.
Ferretti
,
G.
Borghi
,
N.
Nguyen
,
N.
Poilvert
,
C.-H.
Park
,
M.
Cococcioni
, and
N.
Marzari
,
Psi-k Newsletter
119
,
1
(
2013
).
112.
L.
Ferreira
,
M.
Marques
, and
L. K.
Teles
,
Phys. Rev. B
78
,
125116
(
2008
).
114.
I. N.
Remediakis
and
E.
Kaxiras
,
Phys. Rev. B
59
,
5536
(
1999
).
115.
H.
Mera
and
K.
Stokbro
,
Phys. Rev. B
79
,
125109
(
2009
).
116.
P.
Scharoch
and
M.
Winiarski
,
Comput. Phys. Commun.
184
,
2680
(
2013
).
117.
T.
Stein
,
J.
Autschbach
,
N.
Govind
,
L.
Kronik
, and
R.
Baer
,
J. Phys. Chem. Lett.
3
,
3740
(
2012
).
118.
X.
Andrade
and
A.
Aspuru-Guzik
,
Phys. Rev. Lett.
107
,
183002
(
2011
).
119.
N. I.
Gidopoulos
and
N. N.
Lathiotakis
,
J. Chem. Phys.
136
,
224109
(
2012
).
120.
R. V.
Leeuwen
and
E.-J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
121.
J.-D.
Chai
and
P.-T.
Chen
,
Phys. Rev. Lett.
110
,
033002
(
2013
).
122.
E.
Baerends
,
O.
Gritsenko
, and
R.
van Meer
,
Phys. Chem. Chem. Phys.
15
,
16408
(
2013
).
123.
E.
Kraisler
and
L.
Kronik
,
Phys. Rev. Lett.
110
,
126403
(
2013
).
124.
E. H.
Lieb
,
Int. J. Quantum Chem.
24
,
243
(
1983
).
125.
R.
van Leeuwen
,
Adv. Quantum Chem.
43
,
25
(
2003
).
126.
D. P.
Joubert
,
Int. J. Quantum Chem.
113
,
1076
(
2013
).
127.
M.
Hellgren
and
E. K. U.
Gross
,
J. Chem. Phys.
136
,
114102
(
2012
).
128.
M.
Hellgren
and
E. K. U.
Gross
,
Phys. Rev. A
88
,
052507
(
2013
).
129.
130.
L.
Sham
and
M.
Schlüter
,
Phys. Rev. Lett.
51
,
1888
(
1983
).
131.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
125
,
201102
(
2006
).
132.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
,
J. Chem. Phys.
126
,
104102
(
2007
).
133.
O. A.
Vydrov
,
G. E.
Scuseria
, and
J. P.
Perdew
,
J. Chem. Phys.
126
,
154109
(
2007
).
134.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
135.
R.
Haunschild
,
T. M.
Henderson
,
C. A.
Jiménez-Hoyos
, and
G. E.
Scuseria
,
J. Chem. Phys.
133
,
134116
(
2010
).
136.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Chem. Rev.
112
,
289
(
2012
).
137.
M.
Srebro
and
J.
Autschbach
,
J. Phys. Chem. Lett.
3
,
576
(
2012
).
138.
J. D.
Gledhill
,
M. J. G.
Peach
, and
D. J.
Tozer
,
J. Chem. Theory Comput.
9
,
4414
(
2013
).
139.
O. T.
Hofmann
,
V.
Atalla
,
N.
Moll
,
P.
Rinke
, and
M.
Scheffler
,
New J. Phys.
15
,
123028
(
2013
).
140.
R.
Parr
and
L.
Bartolotti
,
J. Phys. Chem.
87
,
2810
(
1983
).
141.
J. R.
Chelikowsky
and
M. L.
Cohen
, in
Handbook on Semiconductors
, edited by
T.
Moss
and
P. T.
Landsberg
(
Elsevier
,
Amsterdam
,
1992
), Vol.
1
, Chap. 3.
142.
G.
Onida
,
L.
Reining
, and
A.
Rubio
,
Rev. Mod. Phys.
74
,
601
(
2002
).
143.
S.
Botti
,
A.
Schindlmayr
,
R. D.
Sole
, and
L.
Reining
,
Rep. Prog. Phys.
70
,
357
(
2007
).
144.
J. R.
Chelikowsky
,
N.
Troullier
, and
Y.
Saad
,
Phys. Rev. Lett.
72
,
1240
(
1994
).
145.
J. R.
Chelikowsky
,
N.
Troullier
,
K.
Wu
, and
Y.
Saad
,
Phys. Rev. B
50
,
11355
(
1994
).
146.
L.
Kronik
,
A.
Makmal
,
M. L.
Tiago
,
M. M. G.
Alemany
,
M.
Jain
,
X.
Huang
,
Y.
Saad
, and
J. R.
Chelikowsky
,
Phys. Status Solidi B
243
,
1063
(
2006
).
147.
See http://parsec.ices.utexas.edu for details on the PARSEC package.
148.
M.
Alemany
,
M.
Jain
,
L.
Kronik
, and
J.
Chelikowsky
,
Phys. Rev. B
69
,
075101
(
2004
).
149.
A.
Natan
,
A.
Benjamini
,
D.
Naveh
,
L.
Kronik
,
M.
Tiago
,
S.
Beckman
, and
J.
Chelikowsky
,
Phys. Rev. B
78
,
075109
(
2008
).
150.
D.
Hamann
,
M.
Schlüter
, and
C.
Chiang
,
Phys. Rev. Lett.
43
,
1494
(
1979
).
151.
R.
Godby
and
I.
White
,
Phys. Rev. Lett.
80
,
3161
(
1998
).
152.
A. F.
Izmaylov
and
G. E.
Scuseria
,
J. Chem. Phys.
129
,
034101
(
2008
).
153.
P.
Mori-Sánchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. Lett.
100
,
146401
(
2008
).
154.
O.
Madelung
,
Semiconductors: Data Handbook
, 3rd ed. (
Springer
,
2004
).
155.
Here and below, it is assumed that the ground states of the system of interest, of its anion and of its cation are not degenerate, or that the degeneracy can be lifted by applying an infinitesimal external field.
156.
The fact that Eq. (2) includes contributions only from the N0- and the N0 + 1-states relies on the conjecture that the series E(N0) for
$N_0 \in \mathbb {N}$
N0N
is a convex, monotonously decreasing series. In other words, all ionization energies I(N0) ≔ E(N0 − 1) − E(N0) are positive, and higher ionizations are always larger than the lower ones: I(N0 − 1) > I(N0). This conjecture, although strongly supported by experimental data, remains without proof, to the best of our knowledge.4,124,136
157.
The calculations were performed for GaAs in the zincblende crystal structure with the experimental lattice constant of a = 10.684 bohrs.154 A numerical precision of 0.02 eV in the reported energy gaps was obtained with a real-space grid spacing of h = 0.25 bohr and an 11×11×11 k-point sampling scheme. The norm-conserving Troullier-Martins pseudopotentials [
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
)]
for Ga and As were obtained using the APE program [
M. J.
Oliveira
and
F.
Nogueira
,
Comput. Phys. Commun.
178
,
524
(
2008
);
M. J. Oliveira, F. Nogueira, and T. Cerqueira, APE-Atomic Pseudopotential Engine, see http://www.tddft.org/programs/APE/], within the scalar-relativistic approximation, with the electronic configurations of [Ar]4s24p14d0 and [Ar]4s24p34d0 for Ga and As, respectively, with s/p/d cutoff radii of 1.8/2.2/2.8 bohrs and 1.8/2.1/2.5 bohrs, using a nonlinear core correction [
S. G.
Louie
,
S.
Froyen
, and
M. L.
Cohen
,
Phys. Rev. B
26
,
1738
(
1982
)]
and choosing the d orbital as the local component in the Kleinman-Bylander projection scheme [
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
)].
158.
We draw special attention to the assumption underlying the derivation leading to Eq. (19): the states with N0, N0 − 1, and N0 + 1 electrons have to be pure, i.e., non-degenerate, states. Note that some degeneracies can be trivially removed: Degeneracy between energy levels in the two spin channels is removed by introducing an infinitesimal magnetic field; degeneracy between symmetric k-points in a periodic crystal is removed by an infinitesimal spatial distortion of the crystal structure. However, non-trivial degeneracies, e.g., a simultaneous fractional occupation of d- and s-bands, requires a non-infinitesimal perturbation for their removal. For these cases, the ensemble approach should be generalized to include more than two components in Eqs. (2) and (8), which may affect the expression obtained for Δ. Therefore, for cases of, e.g., metals and semi-metals a more general treatment is needed.
You do not currently have access to this content.