Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

1.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
2.
A Primer in Density Functional Theory
,
Springer Lecture Notes in Physics
Vol.
620
, edited by
C.
Fiolhais
,
F.
Nogueira
, and
M.
Marques
(
Springer
,
Berlin
,
2003
).
3.
G. L.
Oliver
and
J. P.
Perdew
,
Phys. Rev. A
20
,
397
(
1979
).
4.
P. F.
Loos
and
P. M. W.
Gill
,
J. Chem. Phys.
138
,
164124
(
2013
).
5.
D. C.
Langreth
and
M. J.
Mehl
,
Phys. Rev. B
28
,
1809
(
1983
).
6.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
33
,
8800
(
1986
).
7.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
8.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
9.
J. P.
Perdew
, in
Electronic Structure of Solids'91
, edited by
P.
Ziesche
and
H.
Eshrig
(
Akademie Verlag
,
Berlin
,
1991
), p.
11
.
10.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
11.
J. P.
Perdew
,
K.
Burke
, and
Y.
Wang
,
Phys. Rev. B
54
,
16533
(
1996
).
12.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
13.
E. H.
Lieb
and
S.
Oxford
,
Int. J. Quantum Chem.
19
,
427
(
1981
).
14.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. B
48
,
11638
(
1993
).
15.
E.
Räsänen
,
S.
Pittalis
,
K.
Capelle
, and
C. R.
Proetto
,
Phys. Rev. Lett.
102
,
206406
(
2009
).
16.
G. K. L.
Chan
and
N. C.
Handy
,
Phys. Rev. A
59
,
3075
(
1999
).
17.
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
18.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
80
,
891
(
1998
).
19.
J. G.
Vilhena
,
E.
Räsänen
,
L.
Lehtovaara
, and
M. A. L.
Marques
,
Phys. Rev. A
85
,
052514
(
2012
).
20.
D. J.
Lacks
and
R. G.
Gordon
,
Phys. Rev. A
47
,
4681
(
1993
).
21.
J.
Sun
,
M.
Marsman
,
A.
Ruzsinszky
,
G.
Kresse
, and
J. P.
Perdew
,
Phys. Rev. B
83
,
121410
(
2011
).
22.
A. D.
Becke
,
Int. J. Quantum Chem.
23
,
1915
(
1983
).
23.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
24.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
L. A.
Constantin
, and
J.
Sun
,
Phys. Rev. Lett.
103
,
026403
(
2009
).
25.
J.
Sun
,
B.
Xiao
, and
A.
Ruzsinszky
,
J. Chem. Phys.
137
,
051101
(
2012
).
26.
J.
Sun
,
B.
Xiao
,
Y.
Fang
,
R.
Haunschild
,
P.
Hao
,
A.
Ruzsinszky
,
G. I.
Csonka
,
G. E.
Scuseria
, and
J. P.
Perdew
,
Phys. Rev. Lett.
111
,
106401
(
2013
).
27.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
28.
D. C.
Langreth
and
J. P.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
29.
D. C.
Langreth
and
J. P.
Perdew
,
Phys. Rev. B
15
,
2884
(
1977
).
30.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
31.
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
A.
Ruzsinszky
, and
J. P.
Perdew
,
J. Chem. Phys.
126
,
244107
(
2007
).
32.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
L. A.
Constantin
,
X.
Zhou
,
O. A.
Vydrov
,
G. E.
Scuseria
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
33.
B.
Xiao
,
J.
Sun
,
A.
Ruzsinszky
,
J.
Feng
,
R.
Haunschild
,
G. E.
Scuseria
, and
J. P.
Perdew
,
Phys. Rev. B
88
,
184103
(
2013
).
34.
J. P.
Perdew
,
V. N.
Staroverov
,
J.
Tao
, and
G. E.
Scuseria
,
Phys. Rev. A
78
,
052513
(
2008
).
35.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
36.
M. R.
Pederson
,
A.
Ruzsinszky
, and
J. P.
Perdew
,
J. Chem. Phys.
140
,
121103
(
2014
).
37.
E. H.
Lieb
,
Int. J. Quantum Chem.
24
,
243
(
1983
).
38.
J.
Tao
,
M.
Springborg
, and
J. P.
Perdew
,
J. Chem. Phys.
119
,
6457
(
2003
).
39.
J. P.
Perdew
and
Y.
Wang
, in
Mathematics Applied to Science
, edited by
J. A.
Goldstein
,
S. I.
Rosencrans
, and
G. A.
Sod
(
Academic Press
,
Boston
,
1988
).
40.
R.
Armiento
and
A. E.
Mattsson
,
Phys. Rev. B
66
,
165117
(
2002
).
41.
K.
Burke
,
J. P.
Perdew
,
Y.
Wang
, in
Electronic Density Functional Theory: Recent Progress and New Directions
, edited by
J. F.
Dobson
,
G.
Vignale
, and
M. P.
Das
(
Plenum
,
New York
,
1998
), p.
81
.
42.
K.
Burke
,
F. G.
Cruz
, and
K. C.
Lam
,
J. Chem. Phys.
109
,
8161
(
1998
).
43.
J. D.
Jackson
,
Classical Electromagnetism
(
Wiley
,
NY
,
1962
).
44.
X.-Y.
Pan
and
V.
Sahni
,
Int. J. Quantum Chem.
108
,
2756
(
2008
).
45.
J.
Tao
,
J. Chem. Phys.
115
,
3519
(
2001
).
46.
R. M.
Koehl
,
G. K.
Odom
, and
G. E.
Scuseria
,
Mol. Phys.
87
,
835
(
1996
).
47.
T.
Van Voorhis
and
G. E.
Scuseria
,
J. Chem. Phys.
109
,
400
(
1998
).
48.
S. R.
Gadre
,
L. J.
Bartolotti
, and
N. C.
Handy
,
J. Chem. Phys.
72
,
1034
(
1980
).
49.
M. M.
Odashima
and
K.
Capelle
,
J. Chem. Phys.
127
,
054106
(
2007
).
50.
M.
Levy
,
Phys. Rev. A
43
,
4637
(
1991
).
51.
Y.-H.
Kim
,
I.-H.
Lee
,
S.
Nagaraja
,
J.-P.
Leburton
,
R. Q.
Hood
, and
R. M.
Martin
,
Phys. Rev. B
61
,
5202
(
2000
).
52.
L.
Pollack
and
J. P.
Perdew
,
J. Phys. Condens. Matter
12
,
1239
(
2000
).
53.
L. A.
Constantin
,
J. P.
Perdew
, and
J. M.
Pitarke
,
Phys. Rev. Lett.
101
,
016406
(
2008
).
54.
A.
Vela
,
J. C.
Pacheco-Kato
,
J. L.
Gázquez
,
J. M.
del Campo
, and
S. B.
Trickey
,
J. Chem. Phys.
136
,
144115
(
2012
).
55.
J. M.
del Campo
,
J. L.
Gazquez
,
S. B.
Trickey
, and
A.
Vela
,
Chem. Phys. Lett.
543
,
179
(
2012
).
56.
L.
Chiodo
,
L. A.
Constantin
,
E.
Fabiano
, and
F.
Della Sala
,
Phys. Rev. Lett.
108
,
126402
(
2012
).
57.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
58.
M.
Levy
and
J. P.
Perdew
,
Int. J. Quantum Chem.
49
,
539
(
1994
).
59.
A.
Mirtschink
,
M.
Seidl
, and
P.
Gori-Giorgi
,
J. Chem. Theory Comput.
8
,
3097
(
2012
).
60.
R.
Peverati
and
D. G.
Truhlar
,
Phil. Trans. Roy. Soc. A
372
,
UNSP20120476
(
2014
).
You do not currently have access to this content.