Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed.

1.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
(
30
),
8050
8053
(
1993
).
2.
T. A.
Wesolowski
, “
One-electron equations for embedded electron density: challenge for theory and practical payoffs in multi-level modelling of soft condensed matter
,” in
Computational Chemistry: Reviews of Current Trends
(
World Scientific
,
2006
), Vol.
X
.
3.
T. A.
Wesołowski
,
Phys. Rev. A
77
(
1
),
012504
(
2008
).
4.
K.
Pernal
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
109
(
11
),
2520
2525
(
2009
).
5.
P.
Cortona
,
Phys. Rev. B
44
(
16
),
8454
8458
(
1991
).
6.
R.
Kevorkyants
,
M.
Dulak
, and
T. A.
Wesolowski
,
J. Chem. Phys.
124
,
024104
(
2006
).
7.
P.
Elliott
,
M. H.
Cohen
,
A.
Wasserman
, and
K.
Burke
,
J. Chem. Theory Comput.
5
(
4
),
827
833
(
2009
).
8.
C.
Huang
,
M.
Pavone
, and
E. A.
Carter
,
J. Chem. Phys.
134
(
15
),
154110
(
2011
).
9.
M. E.
Casida
, “
Time-dependent density-functional response theory for molecules
,” in
Recent Advances in Density-Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
).
10.
T. A.
Wesolowski
,
J. Am. Chem. Soc.
126
(
37
),
11444
11445
(
2004
).
11.
G.
Fradelos
,
J. J.
Lutz
,
T. A.
Wesolowski
,
P.
Piecuch
, and
M.
Włoch
,
J. Chem. Theory Comput.
7
(
6
),
1647
1666
(
2011
).
12.
J.
Neugebauer
,
M. J.
Louwerse
,
E. J.
Baerends
, and
T. A.
Wesolowski
,
J. Chem. Phys.
122
(
9
),
094115
(
2005
).
13.
J.
Neugebauer
,
Phys. Rep.
489
(
1–3
),
1
87
(
2010
).
14.
A. S.
Pereira Gomes
and
C. R.
Jacob
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
108
,
222
277
(
2012
).
15.
M. E.
Casida
and
T. A.
Wesolowski
,
Int. J. Quantum Chem.
96
(
6
),
577
588
(
2004
).
16.
Such methods are frequently labeled as “WFT-in-DFT” or “WFT/DFT” methods in the literature. We do not use this numerical practice oriented terminology because both WFT and DFT are exact formulations of many-electron problem within the Born-Oppenheimer approximation.
17.
N.
Govind
,
Y. A.
Wang
,
A. J. R.
da Silva
, and
E. A.
Carter
,
Chem. Phys. Lett.
295
(
1–2
),
129
134
(
1998
).
18.
A. S.
Pereira Gomes
,
C. R.
Jacob
, and
L.
Visscher
,
Phys. Chem. Chem. Phys.
10
(
35
),
5353
5362
(
2008
).
19.
J. D.
Goodpaster
,
N.
Ananth
,
F. R.
Manby
, and
T. F.
Miller
 III
,
J. Chem. Phys.
133
(
8
),
084103
(
2010
).
20.
T. A.
Wesolowski
,
Phys. Rev. Lett.
88
(
20
),
209701
(
2002
).
21.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. B
31
(
10
),
6264
6272
(
1985
).
22.
Y. G.
Khait
and
M. R.
Hoffmann
,
J. Chem. Phys.
133
(
4
),
044107
(
2010
).
23.
The functional form of the FDET embedding potential was also derived in Ref. 22 following the same proof as that in Ref. 3. In the proof given in Ref. 22 a silent assumption is made that the used method to solve Euler-Lagrange equations leads to the exact correlation energy of the embedded density.
24.
M.
Levy
,
Proc. Natl. Acad. Sci. U.S.A.
76
(
12
),
6062
6065
(
1979
).
25.
M.
Levy
,
Phys. Rev. A
26
(
3
),
1200
1208
(
1982
).
26.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
(
3B
),
B864
B871
(
1964
).
27.
C.
Daday
,
C.
König
,
O.
Valsson
,
J.
Neugebauer
, and
C.
Filippi
,
J. Chem. Theory Comput.
9
(
5
),
2355
2367
(
2013
).
28.
M.
Humbert-Droz
,
X.
Zhou
,
S. V.
Shedge
, and
T. A.
Wesolowski
,
Theor. Chem. Acc.
133
(
1
),
1405
(
2013
).
29.
F.
Aquilante
and
T. A.
Wesolowski
,
J. Chem. Phys.
135
(
8
),
084120
(
2011
).
30.
M.
Dułak
,
J.
Kamiński
, and
T. A.
Wesołowski
,
Int. J. Quantum Chem.
109
,
1886
(
2009
).
31.
J. P.
Perdew
,
A.
Ruzsinszky
,
L. A.
Constantin
,
J.
Sun
, and
G. I.
Csonka
,
J. Chem. Theory Comput.
5
,
902
908
(
2009
).
32.
R.
Singh
and
B. M.
Deb
,
Phys. Rep.
311
,
47
(
1999
).
33.
A.
Savin
and
T. A.
Wesolowski
,
Prog. Theor. Chem. Phys.
19
,
311
326
(
2009
).
You do not currently have access to this content.