Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl and HO·H2O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.

1.
J. W.
Spinks
and
R. J.
Woods
,
An Introduction to Radiation Chemistry
(
J. Wiley and Sons
,
New York
,
1990
).
2.
B. C.
Garrett
,
D. A.
Dixon
,
D. M.
Camaioni
,
D. M.
Chipman
,
M. A.
Johnson
,
C. D.
Jonah
,
G. A.
Kimmel
,
J. H.
Miller
,
T. N.
Rescigno
,
P. J.
Rossky
,
S. S.
Xantheas
,
S. D.
Colson
,
A. H.
Laufer
,
D.
Ray
,
P. F.
Barbara
,
D. M.
Bartels
,
K. H.
Becker
,
K. H.
Bowen
,
S. E.
Bradforth
,
I.
Carmichael
,
J. V.
Coe
,
L. R.
Corrales
,
J. P.
Cowin
,
M.
Dupuis
,
K. B.
Eisenthal
,
J. A.
Franz
,
M. S.
Gutowski
,
K. D.
Jordan
,
B. D.
Kay
,
J. A.
LaVerne
,
S. V.
Lymar
,
T. E.
Madey
,
C. W.
McCurdy
,
D.
Meisel
,
S.
Mukamel
,
A. R.
Nilsson
,
T. M.
Orlando
,
N. G.
Petrik
,
S. M.
Pimblott
,
J. R.
Rustad
,
G. K.
Schenter
,
S. J.
Singer
,
A.
Tokmakoff
,
L.-S.
Wang
, and
T. S.
Zwier
,
Chem. Rev.
105
,
355
(
2005
).
3.
J. H.
Seinfeld
and
S. N.
Pandis
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
(
J. Wiley and Sons
,
New York
,
1998
).
4.
G. V.
Buxton
,
C. L.
Greenstock
,
W. P.
Helman
, and
A. B.
Ross
,
J. Phys. Chem. Ref. Data
17
,
513
(
1988
).
5.
J. J.
Pignatello
,
E.
Oliveros
, and
A.
MacKay
,
Crit. Rev. Environ. Sci. Technol.
36
,
1
(
2006
).
6.
J. J.
Pignatello
,
E.
Oliveros
, and
A.
MacKay
,
Crit. Rev. Environ. Sci. Technol.
37
,
273
(
2007
).
7.
B.
Halliwell
and
J.
Gutteridge
,
Free Radicals in Biology and Medicine
, 3rd ed. (
Oxford University Press
,
New York
,
1999
).
8.
R.
D'Auria
,
I.-F. W.
Kuo
, and
D. J.
Tobias
,
J. Phys. Chem. A
112
,
4644
(
2008
).
9.
J.
Grafenstein
,
E.
Kraka
, and
D.
Cremer
,
J. Chem. Phys.
120
,
524
(
2004
).
10.
J.
Grafenstein
,
E.
Kraka
, and
D.
Cremer
,
Phys. Chem. Chem. Phys.
6
,
1096
(
2004
).
11.
S.
Patchkovskii
and
T.
Ziegler
,
J. Chem. Phys.
116
,
7806
(
2002
).
12.
C.
Adriaanse
,
J.
Cheng
,
V.
Chau
,
M.
Sulpizi
,
J.
VandeVondele
, and
M.
Sprik
,
J. Phys. Chem. Lett.
3
,
3411
(
2012
).
13.
D. M.
Chipman
,
J. Phys. Chem. A
115
,
1161
(
2011
).
14.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
15.
P.
Vassilev
,
M. J.
Louwerse
, and
E. J.
Baerends
,
J. Phys. Chem. B
109
,
23605
(
2005
).
16.
J.
VandeVondele
and
M.
Sprik
,
Phys. Chem. Chem. Phys.
7
,
1363
(
2005
).
17.
M.
Yamaguchi
,
J. Phys. Chem. A
115
,
14620
(
2011
).
18.
R. C.
Catton
and
M. C. R.
Symons
,
J. Chem. Soc. A
1969
,
446
.
19.
M. D.
Sevilla
,
S.
Summerfield
,
I.
Eliezer
,
J.
Rak
, and
M. C. R.
Symons
,
J. Phys. Chem. A
101
,
2910
(
1997
).
20.
M.
Valiev
,
R.
D'Auria
,
D. J.
Tobias
, and
B. C.
Garrett
,
J. Phys. Chem. A
113
,
8823
(
2009
).
21.
M.-C.
Kim
,
E.
Sim
, and
K.
Burke
,
Phys. Rev. Lett.
111
,
073003
(
2013
).
22.
C. J.
Umrigar
and
X.
Gonze
,
Phys. Rev. A
50
,
3827
(
1994
).
23.
S.
Kümmel
and
L.
Kronik
,
Rev. Mod. Phys.
80
,
3
(
2008
).
24.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
L.
Blooston
,
K.-R.
Müller
, and
K.
Burke
,
J. Chem. Phys.
139
,
224104
(
2013
).
25.
J. D.
Goodpaster
,
T. A.
Barnes
,
F. R.
Manby
, and
T. F.
Miller
 III
,
J. Chem. Phys.
137
,
224113
(
2012
).
26.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
J. Chem. Phys.
126
,
191109
(
2007
).
27.
P.
Verma
,
A.
Perera
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
524
,
10
(
2012
).
28.
S.
Massidda
,
M.
Posternak
, and
A.
Baldereschi
,
Phys. Rev. B
48
,
5058
(
1993
).
29.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
30.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
31.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
115
,
5718
(
2001
).
32.
F.
Della Sala
and
A.
Görling
,
J. Chem. Phys.
116
,
5374
(
2002
).
33.
P.
Verma
and
R. J.
Bartlett
,
J. Chem. Phys.
137
,
134102
(
2012
).
34.
F.
Furche
,
J. Chem. Phys.
129
,
114105
(
2008
).
35.
G. E.
Scuseria
,
T. M.
Henderson
, and
D. C.
Sorensen
,
J. Chem. Phys.
129
,
231101
(
2008
).
36.
L. O.
Wagner
,
E. M.
Stoudenmire
,
K.
Burke
, and
S. R.
White
,
Phys. Rev. Lett.
111
,
093003
(
2013
).
37.
K.
Burke
and
L. O.
Wagner
,
Int. J. Quantum Chem.
113
,
96
(
2013
).
38.
H.
Shore
,
J.
Rose
, and
E.
Zaremba
,
Phys. Rev. B
15
,
2858
(
1977
).
39.
M.-C.
Kim
,
E.
Sim
, and
K.
Burke
,
J. Chem. Phys.
134
,
171103
(
2011
).
40.
E. J.
Baerends
,
O. V.
Gritsenko
, and
R.
van Meer
,
Phys. Chem. Chem. Phys.
15
,
16408
(
2013
).
41.
D.
Lee
,
F.
Furche
, and
K.
Burke
,
J. Phys. Chem. Lett.
1
,
2124
(
2010
).
42.
E.
Engel
, OPMKS: Atomic DFT program, University of Frankfurt, Germany.
43.
E. K. U.
Gross
,
M.
Petersilka
, and
T.
Grabo
, “
Conventional quantum chemical correlation energy versus density-functional correlation energy
,”
Chemical Applications of Density-Functional Theory
,
ACS Symposium Series
Vol.
629
(
American Chemical Society
,
1996
), Chap. 4, pp.
42
53
.
44.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
45.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
46.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Voska
,
K. A.
Jackson
,
M. R.
Pederson
,
D.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
47.
P. M. W.
Gill
,
B. G.
Johnson
,
J. A.
Pople
, and
M. J.
Frisch
,
Int. J. Quantum Chem.
44
,
319
(
1992
).
48.
N.
Oliphant
and
R. J.
Bartlett
,
J. Chem. Phys.
100
,
6550
(
1994
).
49.
G. E.
Scuseria
,
J. Chem. Phys.
97
,
7528
(
1992
).
50.
K.
Burke
,
F. G.
Cruz
, and
K.-C.
Lam
,
J. Chem. Phys.
109
,
8161
(
1998
).
51.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
52.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
53.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
54.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
55.
A.
Klamt
and
G.
Schuurmann
,
J. Chem. Soc., Perkin Trans. 2
1993
,
799
.
56.
TURBOMOLE V6.3, TURBOMOLE GmbH, Karlsruhe, Germany,
2011
, see http://www.turbomole.com.
57.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
58.
D. E.
Woon
and
J. Thom H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
59.
D.
Marx
,
M. E.
Tuckerman
,
J.
Hutter
, and
M.
Parrinello
,
Nature
397
,
601
(
1999
).
60.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
,
J. Phys. Chem.
100
,
12974
(
1996
).
61.
A.
Görling
and
M.
Levy
,
Phys. Rev. B
47
,
13105
(
1993
).
62.
A.
Görling
and
M.
Levy
,
Phys. Rev. A
50
,
196
(
1994
).
63.
T.
Schwabe
and
S.
Grimme
,
Acc. Chem. Res.
41
,
569
(
2008
).
64.
T.
Schwabe
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
9
,
3397
(
2007
).
65.
E.
Dumont
,
A. D.
Laurent
,
X.
Assfeld
, and
D.
Jacquemin
,
Chem. Phys. Lett.
501
,
245
(
2011
).
You do not currently have access to this content.