We derive an exact expression for the photocurrent of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photocurrent within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of the photo-electrons. Such information can, in principle, be obtained from TDCDFT by exactly modeling the experiment in which the photocurrent is split into energy contributions by means of an external electromagnetic field outside the sample, as is done in standard detectors. We find, however, that this procedure produces very nonlocal correlations between the exchange-correlation fields in the sample and the detector.

1.
2.
N. D.
Lang
and
W.
Kohn
,
Phys. Rev. B
3
,
1215
(
1971
).
3.
A.
Damascelli
,
Z.
Hussain
, and
Z.-X.
Shen
,
Rev. Mod. Phys.
75
,
473
(
2003
).
4.
5.
C.-O.
Almbladh
and
L.
Hedin
, in
Handbook on Synchrotron Radiation
, edited by
E. E.
Koch
(
North-Holland Publishing
,
1983
), Vol.
1
, p.
607
.
6.
C.-O.
Almbladh
,
J. Phys.: Conf. Ser.
35
,
127
(
2006
).
7.
W.
Bardyszewski
and
L.
Hedin
,
Phys. Scr.
32
,
439
(
1985
).
8.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory: An Approach to the Quantum Many-Body Problem
(
Springer
,
Berlin
,
1990
).
9.
E.
Engel
and
R. M.
Dreizler
,
Density Functional Theory: An Advanced Course
(
Springer
,
Heidelberg
,
2011
).
10.
U.
von Barth
, “
Basic density-functional theory—An overview
,”
Phys. Scr.
T109
,
9
(
2004
).
11.
C. A.
Ullrich
,
Time-Dependent Density-Functional Theory: Concepts and Applications
(
Oxford University Press
,
Oxford
,
2012
).
12.
R.
van Leeuwen
,
Int. J. Mod. Phys. B
15
,
1969
(
2001
).
13.
R.
van Leeuwen
,
N. E.
Dahlen
,
G.
Stefanucci
,
C.-O.
Almbladh
, and
U.
von Barth
,
Lecture Notes in Physics
(
Springer
,
2006
), Vol.
706
, p.
33
.
14.
C. A.
Ullrich
and
Z.
Yang
,
Braz. J. Phys.
44
,
154
(
2014
).
15.
M.
Ruggenthaler
and
R.
van Leeuwen
,
EPL
95
,
13001
(
2011
).
16.
G.
Vignale
and
W.
Kohn
,
Phys. Rev. Lett.
77
,
2037
(
1996
).
17.
G.
Vignale
,
Phys. Rev. B
70
,
201102
(R) (
2004
).
18.
I. V.
Tokatly
,
Phys. Rev. B
83
,
035127
(
2011
).
19.
H.
Husser
,
J.
van Heys
, and
E.
Pehlke
,
Phys. Rev. B
84
,
235135
(
2011
).
20.
G.
Stefanucci
and
R.
van Leeuwen
,
Nonequilibrium Many-Body Theory of Quantum Systems
(
Cambridge University Press
,
2013
).
21.
R.
van Leeuwen
,
Prog. Theor. Chem. Phys.
14
,
43
68
(
2003
).
22.
R.
van Leeuwen
, in
Progress in Nonequilibrium Green's Functions II
, edited by
M.
Bonitz
and
D.
Semkat
(
World Scientific
,
Singapore
,
2003
), p.
427
.
23.
C.-O.
Almbladh
and
U.
von Barth
,
Phys. Rev. B
31
,
3231
(
1985
).
24.
R.
Fukuda
,
M.
Komachiya
,
S.
Yokojima
,
Y.
Suzuki
,
K.
Okumura
, and
T.
Inagaki
,
Prog. Theor. Phys. Suppl.
121
,
1
428
(
1995
).
25.
M.
Valiev
and
G. W.
Fernando
, e-print arXiv:cond-mat/9702247.
26.
I. V.
Tokatly
and
O.
Pankratov
,
Phys. Rev. Lett.
86
,
2078
(
2001
).
27.
I. V.
Tokatly
,
R.
Stubner
, and
O.
Pankratov
,
Phys. Rev. B
65
,
113107
(
2002
).
28.
L.
Reining
,
V.
Olevano
,
A.
Rubio
, and
G.
Onida
,
Phys. Rev. Lett.
88
,
066404
(
2002
).
29.
U.
von Barth
,
N. E.
Dahlen
,
R.
van Leeuwen
, and
G.
Stefanucci
,
Phys. Rev. B
72
,
235109
(
2005
).
30.
M.
Hellgren
and
U.
von Barth
,
Phys. Rev. B
78
,
115107
(
2008
).
31.
M.
Hellgren
and
U.
von Barth
,
J. Chem. Phys.
131
,
044110
(
2009
).
32.
M.
Hellgren
and
E. K. U.
Gross
,
Phys. Rev. A
88
,
052507
(
2013
).
33.
In principle Fxc also have an explicit dependence on the xc-field Axc. However, this is not the case for the approximations we consider.
34.
L. J.
Sham
and
M.
Schlüter
,
Phys. Rev. Lett.
51
,
1888
(
1983
).
35.
R.
van Leeuwen
,
Phys. Rev. Lett.
76
,
3610
(
1996
).
36.
D.
Mearns
and
W.
Kohn
,
Phys. Rev. A
35
,
4796
(
1987
).
37.
In contrast the Laplace transform of the response function is invertible, see Ref. 12.
38.
39.
40.
41.
M.
Mundt
,
S.
Kümmel
,
R.
van Leeuwen
, and
P.-G.
Reinhard
,
Phys. Rev. A
75
,
050501
(R) (
2007
).
42.
F.
Aryasetiawan
,
L.
Hedin
, and
K.
Karlsson
,
Phys. Rev. Lett.
77
,
2268
(
1996
).
43.
M.
Guzzo
,
J. J.
Kas
,
F.
Sottile
,
M. G.
Silly
,
F.
Sirotti
,
J. J.
Rehr
, and
L.
Reining
,
Eur. Phys. J. B
85
,
324
(
2012
).
44.
P.
Elliott
,
J. I.
Fuks
,
A.
Rubio
, and
N. T.
Maitra
,
Phys. Rev. Lett.
109
,
266404
(
2012
).
45.
J. I.
Fuks
,
P.
Elliott
,
A.
Rubio
, and
N. T.
Maitra
,
J. Phys. Chem. Lett.
4
,
735
(
2013
).
46.
M.
van Faassen
,
P. L.
de Boeij
,
R.
van Leeuwen
,
J. A.
Berger
, and
J. G.
Snijders
,
Phys. Rev. Lett.
88
,
186401
(
2002
).
47.
A.-M.
Uimonen
,
E.
Khosravi
,
A.
Stan
,
G.
Stefanucci
,
S.
Kurth
,
R.
van Leeuwen
, and
E. K. U.
Gross
,
Phys. Rev. B
84
,
115103
(
2011
).
48.
S.
Kurth
and
G.
Stefanucci
,
Phys. Rev. Lett.
111
,
030601
(
2013
).
49.
P.
Schmitteckert
,
M.
Dzierzawa
, and
P.
Schwab
,
Phys. Chem. Chem. Phys.
15
,
5477
(
2013
).
50.
P.
Elliott
,
S.
Goldson
,
C.
Canahui
, and
N. T.
Maitra
,
Chem. Phys.
391
,
110
(
2011
).
51.
M.
Ruggenthaler
,
S. E. B.
Nielsen
, and
R.
van Leeuwen
,
Phys. Rev. A
88
,
022512
(
2013
).
You do not currently have access to this content.