The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density—in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg–Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau–Yosida regularization, to construct, for any ε > 0, pairs of conjugate functionals (εE, εF) that converge to (E, F) pointwise everywhere as ε → 0+, and such that εF is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau–Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy εE(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for (εE, εF). The Moreau–Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of εF, a rigorous formulation of Kohn–Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn–Sham theory.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
E. H.
Lieb
,
Int. J. Quantum Chem.
24
,
243
(
1983
).
3.
N.
Schuch
and
F.
Verstraete
,
Nat. Phys.
5
,
732
(
2009
).
4.
M.
Garey
and
D.
Johnson
,
Computers and Intractability: A Guide to the Theory of NP-Completeness
(
W. H. Freeman and Company
,
1979
).
5.
P. E.
Lammert
,
Int. J. Quantum Chem.
107
,
1943
(
2007
).
6.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
7.
H.
Bauschke
and
P.
Combettes
,
Convex Analysis and Monotone Operator Theory in Hilbert Spaces
(
Springer
,
New York/Dordrecht/Heidelberg/London
,
2011
).
8.
M.
Levy
,
Proc. Natl. Acad. Sci. U.S.A.
76
,
6062
(
1979
).
9.
L.
Evans
,
Partial Differential Equations
(
American Mathematical Society
,
Providence, RI
,
1998
).
10.
I.
Babuska
and
J.
Osborn
,
Math. Comput.
52
,
275
(
1989
).
11.
Q.
Zhao
,
R.
Morrison
, and
R.
Parr
,
Phys. Rev. A
50
,
2138
(
1994
).
12.
W.
Yang
and
Q.
Wu
,
Phys. Rev. Lett.
89
,
143002
(
2002
).
13.
T.
Heaton-Burgess
,
F. A.
Bulat
, and
W.
Yang
,
Phys. Rev. Lett.
98
,
256401
(
2007
).
14.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
118
,
2498
(
2003
).
15.
F. A.
Bulat
,
T.
Heaton-Burgess
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
127
,
174101
(
2007
).
16.
A. M.
Teale
,
S.
Coriani
, and
T.
Helgaker
,
J. Chem. Phys.
130
,
104111
(
2009
).
17.
J.
van Tiel
,
Convex Analysis: An Introductory Text
(
Wiley
,
Chichester
,
1984
).
18.
I.
Ekeland
and
R.
Témam
,
Convex Analysis and Variational Problems
(
SIAM
,
Philadelphia
,
1999
).
19.
E.
Kreyszig
,
Introductory Functional Analysis with Applications
(
Wiley
,
Chichester
,
1989
).
You do not currently have access to this content.