Self-interaction corrections for Kohn-Sham density functional theory are reviewed for their physical meanings, formulations, and applications. The self-interaction corrections get rid of the self-interaction error, which is the sum of the Coulomb and exchange self-interactions that remains because of the use of an approximate exchange functional. The most frequently used self-interaction correction is the Perdew-Zunger correction. However, this correction leads to instabilities in the electronic state calculations of molecules. To avoid these instabilities, several self-interaction corrections have been developed on the basis of the characteristic behaviors of self-interacting electrons, which have no two-electron interactions. These include the von Weizsäcker kinetic energy and long-range (far-from-nucleus) asymptotic correction. Applications of self-interaction corrections have shown that the self-interaction error has a serious effect on the states of core electrons, but it has a smaller than expected effect on valence electrons. This finding is supported by the fact that the distribution of self-interacting electrons indicates that they are near atomic nuclei rather than in chemical bonds.

1.
T.
Tsuneda
,
Density Functional Theory in Quantum Chemistry
(
Springer
,
Tokyo
,
2014
).
2.
D. R.
Hartree
,
Math. Proc. Cambridge Philos. Soc.
24
,
89
(
1928
).
3.
V.
Fock
,
Z. Phys.
61
,
126
(
1930
).
4.
L. H.
Thomas
,
Math. Proc. Cambridge Philos. Soc.
23
,
542
(
1927
).
5.
E.
Fermi
,
Z. Phys.
48
,
73
(
1928
).
6.
E.
Fermi
and
E.
Amaldi
,
Accad. Ital. Rome
6
,
119
(
1934
).
7.
C. A.
Coulson
and
C. S.
Sharma
,
Proc. Phys. Soc.
79
,
920
(
1962
).
8.
R. D.
Cowan
,
Phys. Rev.
163
,
54
(
1967
).
9.
G. W.
Bryant
and
G. D.
Mahan
,
Phys. Rev. B
17
,
1744
(
1978
).
10.
Q.
Zhao
,
R. C.
Morrison
, and
R. G.
Parr
,
Phys. Rev. A
50
,
2138
(
1994
).
11.
N. I.
Gidopoulos
and
N. N.
Lathiotakis
,
J. Chem. Phys.
136
,
224109
(
2012
).
12.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
13.
I.
Lindgren
,
Int. J. Quantum Chem.
5
,
411
(
1971
).
14.
M. S.
Gopinathan
,
Phys. Rev. A
15
,
2135
(
1977
).
15.
H.
Stoll
,
C. M. E.
Pavlidou
, and
H.
Preuss
,
Theor. Chim. Acta
149
,
143
(
1978
).
16.
J. P.
Perdew
,
Chem. Phys. Lett.
64
,
127
(
1979
).
17.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density-Functional Theory. An Approach to the Quantum Many-Body Problem
(
Springer
,
Berlin
,
1990
).
18.
M.
Levy
,
J. P.
Perdew
, and
V.
Sahni
,
Phys. Rev. A
30
,
2745
(
1984
).
19.
T.
Tsuneda
,
M.
Kamiya
, and
K.
Hirao
,
J. Comput. Chem.
24
,
1592
(
2003
).
20.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
21.
A.
Savin
,
A. D.
Becke
,
J.
Flad
,
R.
Nesper
,
H.
Preuss
, and
H. G.
von Schnering
,
Angew. Chem., Int. Ed. Engl.
30
,
409
(
1991
).
22.
B.
Silvi
and
A.
Savin
,
Nature
371
,
683
(
1994
).
23.
A.
Savin
,
R.
Nesper
,
S.
Wengert
, and
T. F.
Fässler
,
Angew. Chem., Int. Ed. Engl.
36
,
1808
(
1997
).
24.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
25.
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
26.
P. A. M.
Dirac
,
Math. Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
27.
P.
Mori-Sánchez
,
A.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
125
,
201102
(
2006
).
28.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L. J.
Balduz
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
29.
W.
Yang
,
Y.
Zhang
, and
P. W.
Ayers
,
Phys. Rev. Lett.
84
,
5172
(
2000
).
30.
J. F.
Janak
,
Phys. Rev. B
18
,
7165
(
1978
).
31.
L. J.
Sham
and
M.
Schlüter
,
Phys. Rev. B
32
,
3883
(
1985
).
32.
T.
Tsuneda
and
K.
Hirao
, “
Long-range correction for density functional theory
,”
WIREs Comput. Mol. Sci.
doi: (
2013
).
33.
T.
Tsuneda
,
J.-W.
Song
,
S.
Suzuki
, and
K.
Hirao
,
J. Chem. Phys.
133
,
174101
(
2010
).
34.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Czonka
,
G. E.
Scuseria
, and
O. A.
Vydrov
,
Phys. Rev. A
77
,
060502
(
2008
).
35.
C. D.
Pemmaraju
,
S.
Sanvito
, and
K.
Burke
,
Phys. Rev. B
77
,
121204
(
2008
).
36.
A. V.
Arbuznikov
and
M.
Kaupp
,
J. Chem. Phys.
136
,
014111
(
2012
).
37.
M.
Kamiya
,
H.
Sekino
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
122
,
234111
(
2005
).
38.
T.
Tsuneda
,
M.
Kamiya
,
N.
Morinaga
, and
K.
Hirao
,
J. Chem. Phys.
114
,
6505
(
2001
).
39.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
,
Phys. Chem. Chem. Phys.
6
,
1096
(
2004
).
40.
B. G.
Johnson
,
C. A.
Gonzales
,
P. M. W.
Gill
, and
J. A.
Pople
,
Chem. Phys. Lett.
221
,
100
(
1994
).
41.
M. R.
Pederson
,
R. A.
Heaton
, and
C. C.
Lin
,
J. Chem. Phys.
80
,
1972
(
1984
).
42.
S.
Goedecker
and
C. J.
Umrigar
,
Phys. Rev. A
55
,
1765
(
1997
).
43.
O. A.
Vydrov
and
G. E.
Scuseria
,
J. Chem. Phys.
121
,
8187
(
2004
).
44.
V.
Polo
,
E.
Kraka
, and
D.
Cremer
,
Mol. Phys.
100
,
1771
(
2002
).
45.
D.
Vieira
and
K.
Capelle
,
J. Chem. Theory Comput.
6
,
3319
(
2010
).
46.
J. D.
Talman
and
W. F.
Shadwick
,
Phys. Rev. A
14
,
36
(
1976
).
47.
X.-M.
Tong
and
S.-I.
Chu
,
Phys. Rev. A
55
,
3406
(
1997
).
48.
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
,
Phys. Rev. A
45
,
101
(
1992
).
49.
D.
Hofmann
and
S.
Kümmel
,
J. Chem. Phys.
137
,
064117
(
2012
).
50.
A. D.
Becke
,
Int. J. Quantum Chem.
23
,
1915
(
1983
).
51.
A. D.
Becke
and
M. R.
Roussel
,
Phys. Rev. A
39
,
3761
(
1989
).
52.
R.
Neumann
and
N. C.
Handy
,
Chem. Phys. Lett.
246
,
381
(
1995
).
53.
J.
Jaramillo
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
1068
(
2003
).
54.
A.
Nakata
,
T.
Tsuneda
, and
K.
Hirao
,
J. Comput. Chem.
30
,
2583
(
2009
).
55.
A.
Nakata
,
T.
Tsuneda
, and
K.
Hirao
,
J. Phys. Chem. A
114
,
8521
(
2010
).
56.
A.
Nakata
and
T.
Tsuneda
,
J. Chem. Phys.
139
,
064102
(
2013
).
57.
H.
Bahmann
,
A. V.
Rodenberg
,
A. V.
Arbuznikov
, and
M.
Kaupp
,
J. Chem. Phys.
126
,
011103
(
2007
).
58.
B. G.
Janesko
and
G. E.
Scuseria
,
J. Chem. Phys.
127
,
164117
(
2007
).
59.
B. G.
Janesko
and
G. E.
Scuseria
,
J. Chem. Phys.
128
,
084111
(
2008
).
60.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
115
,
3540
(
2001
).
61.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
62.
J. P.
Perdew
, in
Electronic Structure of Solids
, edited by
P.
Ziesche
and
H.
Eschrigh
(
Akademie Verlag
,
Berlin
,
1991
).
63.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
64.
R.
Latter
,
Phys. Rev.
99
,
510
(
1955
).
65.
C. O.
Almbladh
and
U.
von Barth
,
Phys. Rev. B
31
,
3231
(
1985
).
66.
D. J.
Tozer
and
N. C.
Handy
,
J. Chem. Phys.
109
,
10180
(
1998
).
67.
M. E.
Casida
,
K. C.
Casida
, and
D. R.
Salahub
,
Int. J. Quantum Chem.
70
,
933
(
1998
).
68.
M. E.
Casida
and
D. R.
Salahub
,
J. Chem. Phys.
113
,
8918
(
2000
).
69.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
,
J. Chem. Phys.
120
,
8425
(
2004
).
70.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
71.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
72.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
73.
T.
Tsuneda
,
T.
Suzumura
, and
K.
Hirao
,
J. Chem. Phys.
110
,
10664
(
1999
).
74.
J. P.
Perdew
,
Density Functional Methods in Physics
,
NATO Advanced Science Institutes Series
Vol.
123
, edited by
R. M.
Dreizler
and
J. d.
Providencia
(
Plenum Press
,
New York
,
1985
).
75.
A.
Görling
and
M.
Levy
,
Phys. Rev. A
52
,
4493
(
1995
).
76.
A.
Svane
and
O.
Gunnarsson
,
Phys. Rev. Lett.
65
,
1148
(
1990
).
77.
I. G.
Gerber
,
J. G.
Angyan
,
M.
Marsman
, and
G.
Kresse
,
J. Chem. Phys.
127
,
054101
(
2007
).
78.
M.
Arai
and
T.
Fujiwara
,
Phys. Rev. B
51
,
1477
(
1995
).
79.
O. A.
Vydrov
and
G. E.
Scuseria
,
J. Chem. Phys.
122
,
184107
(
2005
).
80.
S.
Klüpfel
,
P.
Klüpfel
, and
H.
Jónsson
,
Phys. Rev. A
84
,
050501
(
2011
).
81.
S.
Klüpfel
,
P. M.
Dinh
,
P.-G.
Reinhard
, and
E.
Suraud
,
Phys. Rev. A
88
,
052501
(
2013
).
82.
O. A.
Vydrov
,
G. E.
Scuseria
, and
J. P.
Perdew
,
J. Chem. Phys.
126
,
154109
(
2007
).
83.
A. I.
Lichtenstein
,
V. I.
Anisimov
, and
J.
Zaanen
,
Phys. Rev. B
52
,
R5467
R
(
1995
).
84.
V. I.
Anisimov
,
F.
Aryasetiawan
, and
A. I.
Lichtenstein
,
J. Phys.: Condens. Matter
9
,
767
(
1997
).
85.
C. D.
Pemmaraju
,
T.
Archer
,
D.
Sánchez-Portal
, and
S.
Sanvito
,
Phys. Rev. B
75
,
045101
(
2007
).
86.
A.
Filippetti
,
C. D.
Pemmaraju
,
S.
Sanvito
,
P.
Delugas
,
D.
Puggioni
, and
V.
Fiorentini
,
Phys. Rev. B
84
,
195127
(
2011
).
87.
A.
Filippetti
and
N. A.
Spaldin
,
Phys. Rev. B
67
,
125109
(
2003
).
88.
S.
Hamel
,
M. E.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
116
,
8276
(
2002
).
89.
I. V.
Schweigert
and
R. J.
Bartlett
,
J. Chem. Phys.
129
,
124109
(
2008
).
90.
A. M.
Teale
,
F.
De Proft
, and
D. J.
Tozer
,
J. Chem. Phys.
129
,
044110
(
2008
).
91.
G.
Tu
,
V.
Carravetta
,
O.
Vahtras
, and
H.
Ågren
,
J. Chem. Phys.
127
,
174110
(
2007
).
92.
D.
Hofmann
,
T.
Körzdörfer
, and
S.
Kümmel
,
Phys. Rev. Lett.
108
,
146401
(
2012
).
93.
M.
Chiba
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
124
,
144106
(
2006
).
94.
S.
Patchkovskii
and
T.
Ziegler
,
J. Chem. Phys.
116
,
7806
(
2002
).
95.
M.
Kamiya
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
117
,
6010
(
2002
).
96.
J.-W.
Song
,
S.
Tokura
,
T.
Sato
,
M. A.
Watson
, and
K.
Hirao
,
J. Chem. Phys.
127
,
154109
(
2007
).
97.
R. K.
Singh
,
T.
Tsuneda
, and
K.
Hirao
,
Theor. Chem. Acc.
130
,
153
(
2011
).
98.
J.-W.
Song
,
T.
Tsuneda
,
T.
Sato
, and
K.
Hirao
,
Org. Lett.
12
,
1440
(
2010
).
99.
J.-W.
Song
,
T.
Tsuneda
,
T.
Sato
, and
K.
Hirao
,
Theor. Chem. Acc.
130
,
851
(
2011
).
100.
R. K.
Singh
and
T.
Tsuneda
,
J. Comput. Chem.
34
,
379
(
2013
).
101.
T.
Tsuneda
, and
T.
Taketsugu
, in
π-Stacked Polymers and Molecules: Theory, Synthesis, and Properties
, edited by
T.
Nakano
(
Springer
,
Tokyo
,
2013
).
102.
B. J.
Lynch
and
D. G.
Truhlar
,
J. Phys. Chem. A
107
,
3898
(
2003
).
103.
Y.
Zhao
,
N.
González-Garcia
, and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
2012
(
2005
).
104.
J. Z.
Pu
and
D. G.
Truhlar
,
J. Phys. Chem. A
109
,
773
(
2005
).
105.
T.
Sato
and
H.
Nakai
,
J. Chem. Phys.
131
,
224104
(
2009
).
106.
S.
Patchkovskii
,
J.
Autschbach
, and
T.
Ziegler
,
J. Chem. Phys.
115
,
26
(
2001
).
107.
E.
Ruiz
,
S.
Alvarez
,
J.
Cano
, and
V.
Polo
,
J. Chem. Phys.
123
,
164110
(
2005
).
You do not currently have access to this content.