We present and test a new approximation for the exchange-correlation (xc) energy of Kohn-Sham density functional theory. It combines exact exchange with a compatible non-local correlation functional. The functional is by construction free of one-electron self-interaction, respects constraints derived from uniform coordinate scaling, and has the correct asymptotic behavior of the xc energy density. It contains one parameter that is not determined ab initio. We investigate whether it is possible to construct a functional that yields accurate binding energies and affords other advantages, specifically Kohn-Sham eigenvalues that reliably reflect ionization potentials. Tests for a set of atoms and small molecules show that within our local-hybrid form accurate binding energies can be achieved by proper optimization of the free parameter in our functional, along with an improvement in dissociation energy curves and in Kohn-Sham eigenvalues. However, the correspondence of the latter to experimental ionization potentials is not yet satisfactory, and if we choose to optimize their prediction, a rather different value of the functional's parameter is obtained. We put this finding in a larger context by discussing similar observations for other functionals and possible directions for further functional development that our findings suggest.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
New York
,
1989
).
4.
Density Functional Theory
, edited by
R.
Dreizler
and
E. K. U.
Gross
(
Plenum Press
,
New York
,
1995
).
5.
A Primer in Density Functional Theory
,
Lectures in Physics
Vol.
620
, edited by
C.
Fiolhais
,
F.
Nogueira
, and
M. A.
Marques
(
Springer
,
2003
).
6.
S.
Kurth
and
J. P.
Perdew
,
Int. J. Quantum Chem.
77
,
814
(
2000
).
7.
K.
Burke
,
J. Chem. Phys.
136
,
150901
(
2012
).
8.
J. P.
Perdew
, and
K.
Schmidt
, in
Density Functional Theory and its Application to Materials
, edited by
V.
Van Doren
,
C.
Van Alsenoy
, and
P.
Geerlings
(
AIP
,
Melville, NY
,
2001
).
9.
D.
Ceperley
and
B.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
10.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
11.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
12.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
13.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
33
,
8800
(
1986
).
14.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
15.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
16.
J.
Perdew
,
in Electronic Structure of Solids '91
, edited by
P.
Ziesche
and
H.
Eschrig
(
Akademie Verlag
,
Berlin
,
1991
).
17.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
18.
Z.
Wu
and
R.
Cohen
,
Phys. Rev. B
73
,
2
(
2006
).
19.
P.
Haas
,
F.
Tran
,
P.
Blaha
, and
K.
Schwarz
,
Phys. Rev. B
83
,
205117
(
2011
).
20.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
21.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
22.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
23.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
24.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
25.
M.
Ernzerhof
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
5029
(
1999
).
26.
T.
Grabo
,
T.
Kreibich
, and
E. K. U.
Gross
,
Mol. Eng.
7
,
27
(
1997
).
27.
E.
Engel
and
R.
Dreizler
,
Density Functional Theory: An Advanced Course
(
Springer
,
2011
).
28.
S.
Kümmel
and
L.
Kronik
,
Rev. Mod. Phys.
80
,
3
(
2008
).
29.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. Lett.
51
,
1884
(
1983
).
30.
D.
Tozer
and
N. C.
Handy
,
J. Chem. Phys.
109
,
10180
(
1998
).
31.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
,
Phys. Rev. Lett.
49
,
1691
(
1982
).
32.
M.
Levy
,
J. P.
Perdew
, and
V.
Sahni
,
Phys. Rev. A
30
,
2745
(
1984
).
33.
C.-O.
Almbladh
and
U.
von Barth
,
Phys. Rev. B
31
,
3231
(
1985
).
34.
J. P.
Perdew
and
M.
Levy
,
Phys. Rev. B
56
,
16021
(
1997
).
35.
R.
Stowasser
and
R.
Hoffmann
,
J. Am. Chem. Soc.
121
,
3414
(
1999
).
36.
D. P.
Chong
,
O. V.
Gritsenko
, and
E. J.
Baerends
,
J. Chem. Phys.
116
,
1760
(
2002
).
37.
T.
Körzdörfer
,
S.
Kümmel
,
N.
Marom
, and
L.
Kronik
,
Phys. Rev. B
79
,
201205
R
(
2009
).
38.
T.
Körzdörfer
,
S.
Kümmel
,
N.
Marom
, and
L.
Kronik
,
Phys. Rev. B
82
,
129903
E
(
2010
).
39.
M.
Dauth
,
T.
Körzdörfer
,
S.
Kümmel
,
J.
Ziroff
,
M.
Wiessner
,
A.
Schöll
,
F.
Reiner
,
M.
Arita
, and
K.
Shimada
,
Phys. Rev. Lett.
107
,
193002
(
2011
).
40.
P.
Bleiziffer
,
A.
Heßelmann
, and
A.
Görling
,
J. Chem. Phys.
139
,
084113
(
2013
).
41.
M.
Cohen
and
J.
Chelikowsky
,
Electronic Structure and Optical Properties of Semiconductors
(
Springer-Verlag
,
Berlin
,
1988
).
42.
N.
Dori
,
M.
Menon
,
L.
Kilian
,
M.
Sokolowski
,
L.
Kronik
, and
E.
Umbach
,
Phys. Rev. B
73
,
195208
(
2006
).
43.
M.
Mundt
,
S.
Kümmel
,
B.
Huber
, and
M.
Moseler
,
Phys. Rev. B
73
,
205407
(
2006
).
44.
M.
Mundt
and
S.
Kümmel
,
Phys. Rev. B
76
,
035413
(
2007
).
45.
T.
Körzdörfer
and
S.
Kümmel
,
Phys. Rev. B
82
,
155206
(
2010
).
46.
N.
Marom
,
O.
Hod
,
G. E.
Scuseria
, and
L.
Kronik
,
J. Chem. Phys.
128
,
164107
(
2008
).
47.
N.
Marom
and
L.
Kronik
,
Appl. Phys. A
95
,
159
(
2009
).
48.
N.
Marom
,
A.
Tkatchenko
,
M.
Scheffler
, and
L.
Kronik
,
J. Chem. Theory Comput.
6
,
81
(
2010
).
49.
F.
Bisti
,
A.
Stroppa
,
M.
Donarelli
,
S.
Picozzi
, and
L.
Ottaviano
,
Phys. Rev. B
84
,
195112
(
2011
).
50.
P.
Rinke
,
A.
Qteish
,
J.
Neugebauer
,
C.
Freysoldt
, and
M.
Scheffler
,
New J. Phys.
7
,
126
(
2005
).
51.
F.
Fuchs
,
J.
Furthmüller
,
F.
Bechstedt
,
M.
Shishkin
, and
G.
Kresse
,
Phys. Rev. B
76
,
115109
(
2007
).
52.
F.
Fuchs
and
F.
Bechstedt
,
Phys. Rev. B
77
,
155107
(
2008
).
53.
C.
Rödl
,
F.
Fuchs
,
J.
Furthmüller
, and
F.
Bechstedt
,
Phys. Rev. B
79
,
235114
(
2009
).
54.
M.
Betzinger
,
C.
Friedrich
,
A.
Görling
, and
S.
Blügel
,
Phys. Rev. B
85
,
245124
(
2012
).
55.
M.
Betzinger
,
C.
Friedrich
, and
S.
Blügel
,
Phys. Rev. B
88
,
075130
(
2013
).
56.
L. J.
Sham
and
M.
Schlüter
,
Phys. Rev. Lett.
51
,
1888
(
1983
).
57.
L.
Kronik
,
T.
Stein
,
S.
Refaely-Abramson
, and
R.
Baer
,
J. Chem. Theory Comput.
8
,
1515
(
2012
).
58.
D.
Bylander
and
L.
Kleinman
,
Phys. Rev. B
52
,
14566
(
1995
).
59.
D.
Bylander
and
L.
Kleinman
,
Phys. Rev. B
54
,
7891
(
1996
).
60.
M.
Städele
,
M.
Moukara
,
J. A.
Majewski
,
P.
Vogl
, and
A.
Görling
,
Phys. Rev. B
59
,
10031
(
1999
).
61.
E.
Engel
and
R.
Schmid
,
Phys. Rev. Lett.
103
,
036404
(
2009
).
62.
T. M.
Henderson
,
J.
Paier
, and
G. E.
Scuseria
,
Phys. Status Solidi B
248
,
767
(
2011
).
63.
E.
Engel
,
A.
Höck
, and
R.
Dreizler
,
Phys. Rev. A
62
,
042502
(
2000
).
64.
O.
Gunnarsson
and
B.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
65.
E.
Prodan
and
W.
Kohn
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
11635
(
2005
).
66.
F. G.
Cruz
,
K.-C.
Lam
, and
K.
Burke
,
J. Phys. Chem. A
102
,
4911
(
1998
).
67.
J.
Jaramillo
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
1068
(
2003
).
68.
J. P.
Perdew
,
V. N.
Staroverov
,
J.
Tao
, and
G. E.
Scuseria
,
Phys. Rev. A
78
,
052513
(
2008
).
69.
M.
Ernzerhof
,
J. P.
Perdew
, and
K.
Burke
,
Int. J. Quantum Chem.
64
,
285
(
1997
).
70.
A. V.
Arbuznikov
,
M.
Kaupp
, and
H.
Bahmann
,
J. Chem. Phys.
124
,
204102
(
2006
).
71.
A. V.
Arbuznikov
and
M.
Kaupp
,
Chem. Phys. Lett.
440
,
160
(
2007
).
72.
H.
Bahmann
,
A.
Rodenberg
,
A. V.
Arbuznikov
, and
M.
Kaupp
,
J. Chem. Phys.
126
,
011103
(
2007
).
73.
M.
Kaupp
,
H.
Bahmann
, and
A. V.
Arbuznikov
,
J. Chem. Phys.
127
,
194102
(
2007
).
74.
A. V.
Arbuznikov
,
H.
Bahmann
, and
M.
Kaupp
,
J. Phys. Chem. A
113
,
11898
(
2009
).
75.
R.
Haunschild
,
B. G.
Janesko
, and
G. E.
Scuseria
,
J. Chem. Phys.
131
,
154112
(
2009
).
76.
R.
Haunschild
and
G. E.
Scuseria
,
J. Chem. Phys.
132
,
224106
(
2010
).
77.
R.
Haunschild
and
G. E.
Scuseria
,
J. Chem. Phys.
133
,
134116
(
2010
).
78.
K.
Theilacker
,
A. V.
Arbuznikov
,
H.
Bahmann
, and
M.
Kaupp
,
J. Phys. Chem. A
115
,
8990
(
2011
).
79.
J. P.
Perdew
,
A.
Ruzsinszky
,
J.
Tao
,
V. N.
Staroverov
,
G. E.
Scuseria
, and
G. I.
Csonka
,
J. Chem. Phys.
123
,
062201
(
2005
).
80.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
82.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
83.
A. D.
Becke
,
Int. J. Quantum Chem.
23
,
585
(
1985
).
84.
J. F.
Dobson
,
J. Phys.: Condens. Matter
4
,
7877
(
1992
).
85.
J.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
,
Phys. Rev. Lett.
82
,
2544
(
1999
).
86.
S.
Kümmel
and
J. P.
Perdew
,
Mol. Phys.
101
,
1363
(
2003
).
87.
S.
Kurth
,
J. P.
Perdew
, and
P.
Blaha
,
Int. J. Quantum Chem.
75
,
889
(
1999
).
88.
D.
Hofmann
and
S.
Kümmel
,
J. Chem. Phys.
137
,
064117
(
2012
).
89.
A.
Karolewski
,
L.
Kronik
, and
S.
Kümmel
,
J. Chem. Phys.
138
,
204115
(
2013
).
90.
A.
Makmal
,
S.
Kümmel
, and
L.
Kronik
,
J. Chem. Theory Comput.
5
,
1731
(
2009
);
[PubMed]
A.
Makmal
,
S.
Kümmel
, and
L.
Kronik
,
J. Chem. Theory Comput.
7
,
2665
(
2011
).
[PubMed]
91.
A.
Makmal
, Ph.D. thesis,
Weizmann Institute of Science
,
2010
.
92.
S.
Kümmel
and
J. P.
Perdew
,
Phys. Rev. Lett.
90
,
043004
(
2003
).
93.
S.
Kümmel
and
J. P.
Perdew
,
Phys. Rev. B
68
,
035103
(
2003
).
94.
J.
Krieger
,
Y.
Li
, and
G.
Iafrate
,
Phys. Rev. A
46
,
5453
(
1992
).
95.
F.
della Sala
and
A.
Görling
,
J. Chem. Phys.
115
,
5718
(
2001
).
96.
O. V.
Gritsenko
and
E. J.
Baerends
,
Phys. Rev. A
64
,
042506
(
2001
).
97.
I. G.
Ryabinkin
,
A. A.
Kananenka
, and
V. N.
Staroverov
,
Phys. Rev. Lett.
111
,
013001
(
2013
).
98.
T.
Kreibich
,
S.
Kurth
,
T.
Grabo
, and
E. K. U.
Gross
,
Adv. Quantum Chem.
33
,
31
(
1998
).
99.
A.
Seidl
,
A.
Görling
,
P.
Vogl
,
J.
Majewski
, and
M.
Levy
,
Phys. Rev. B
53
,
3764
(
1996
).
100.
TURBOMOLE V6.4 2012, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
101.
Y.
Li
,
J.
Krieger
, and
G.
Iafrate
,
Phys. Rev. A
47
,
165
(
1993
).
102.
CRC Handbook of Chemistry and Physics
, 92nd ed., edited by
D. R.
Lide
(
CRC
,
London
,
2011
).
103.
T.
Bally
and
G. N.
Sastry
,
J. Phys. Chem. A
101
,
7923
(
1997
).
104.
A.
Ruzsinszky
,
J. P.
Perdew
, and
G. I.
Csonka
,
J. Phys. Chem. A
109
,
11006
(
2005
).
105.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
106.
E.
Livshits
and
R.
Baer
,
J. Phys. Chem. A
112
,
12789
(
2008
).
107.
J.
Nafziger
and
A.
Wasserman
, e-print arXiv:1305.4966.
108.
A. D.
Dwyer
and
D. J.
Tozer
,
J. Chem. Phys.
135
,
164110
(
2011
).
109.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Chem. Rev.
112
,
289
(
2012
).
110.
A.
Ruzsinszky
,
J. P.
Perdew
,
G. I.
Csonka
,
O. A.
Vydrov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
194112
(
2006
).
111.
T.
Körzdörfer
,
S.
Kümmel
, and
M.
Mundt
,
J. Chem. Phys.
129
,
014110
(
2008
).
112.
N.
Sai
,
P. F.
Barbara
, and
K.
Leung
,
Phys. Rev. Lett.
106
,
226403
(
2011
).
113.
Y.
Imamura
,
R.
Kobayashi
, and
H.
Nakai
,
Chem. Phys. Lett.
513
,
130
(
2011
).
114.
V.
Atalla
,
M.
Yoon
,
F.
Caruso
,
P.
Rinke
, and
M.
Scheffler
,
Phys. Rev. B
88
,
165122
(
2013
).
115.
Y.
Zhao
and
D.
Truhlar
,
Acc. Chem. Res.
41
,
157
(
2008
).
116.
T.
Stein
,
H.
Eisenberg
,
L.
Kronik
, and
R.
Baer
,
Phys. Rev. Lett.
105
,
266802
(
2010
);
[PubMed]
U.
Salzner
and
R.
Baer
,
J. Chem. Phys.
131
,
231101
(
2009
).
[PubMed]
117.
S.
Refaely-Abramson
,
R.
Baer
, and
L.
Kronik
,
Phys. Rev. B
84
,
075144
(
2011
).
118.
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
N.
Govind
,
J.
Autschbach
,
J. B.
Neaton
,
R.
Baer
, and
L.
Kronik
,
Phys. Rev. Lett.
109
,
226405
(
2012
).
119.
T.
Körzdörfer
,
J. S.
Sears
,
C.
Sutton
, and
J.-L.
Brédas
,
J. Chem. Phys.
135
,
204107
(
2011
).
120.
G.
Sini
,
J. S.
Sears
, and
J.-L.
Brédas
,
J. Chem. Theory Comput.
7
,
602
(
2011
).
121.
M. E.
Foster
and
B. M.
Wong
,
J. Chem. Theory Comput.
8
,
2682
(
2012
).
122.
H.
Phillips
,
S.
Zheng
,
A.
Hyla
,
R.
Laine
,
T.
Goodson
,
E.
Geva
, and
B. D.
Dunietz
,
J. Phys. Chem. A
116
,
1137
(
2012
).
123.
C.
Risko
and
J.-L.
Brédas
,
Topics in Current Chemistry
(
Springer
,
Berlin
,
2013
), pp.
1
38
.
124.
E.
Livshits
and
R.
Baer
,
Phys. Chem. Chem. Phys.
9
,
2932
(
2007
).
125.
M. R.
Pederson
,
R. A.
Heaton
, and
C. C.
Lin
,
J. Chem. Phys.
82
,
2688
(
1985
).
126.
S.
Klüpfel
,
P.
Klüpfel
, and
H.
Jónsson
,
J. Chem. Phys.
137
,
124102
(
2012
).
127.
C. A.
Ullrich
,
P.-G.
Reinhard
, and
E.
Suraud
,
Phys. Rev. A
62
,
053202
(
2000
).
128.
O. A.
Vydrov
and
G. E.
Scuseria
,
J. Chem. Phys.
122
,
184107
(
2005
).
129.
D.
Hofmann
,
S.
Klüpfel
,
P.
Klüpfel
, and
S.
Kümmel
,
Phys. Rev. A
85
,
062514
(
2012
).
130.
O. A.
Vydrov
,
G. E.
Scuseria
,
J. P.
Perdew
,
A.
Ruzsinszky
, and
G. I.
Csonka
,
J. Chem. Phys.
124
,
094108
(
2006
).
131.
P.
Verma
and
R. J.
Bartlett
,
J. Chem. Phys.
137
,
134102
(
2012
).
132.
R.
Armiento
and
S.
Kümmel
,
Phys. Rev. Lett.
111
,
036402
(
2013
).
133.
E.
Kraisler
and
L.
Kronik
,
Phys. Rev. Lett.
110
,
126403
(
2013
).
134.
Note that there exists a stronger requirement on the correlation energy, namely, limγ → ∞Ec[nγ] > −∞ (see Ref. 81, Eq. (12)), which here we do not strive to fulfill.
135.
The quantities δE and δI were obtained relying on all the molecules and atoms in the reference set (M = 26), while δD was obtained relying on the molecules only (M = 18).
136.
When calculating δI(c), the vertical experimental ionization potentials were used (see Ref. 102 and http://webbook.nist.gov).
137.
The numerical error in Lm is governed by the accuracy of 1 mRy in the total energy, rather than by the convergence of the relaxation process.
138.
Two exceptional cases are LiH and Li2, which have an extremely shallow E(L) minimum. The uncertainty of 1 mRy in the total energy translates into a numerical uncertainty in the bond length of 0.16 bohr and 0.26 bohr, respectively. Therefore, the difference
$|L_m - L_m^{exp}|$
|LmLmexp|
, being 0.04 bohr and 0.22 bohr, although large, has no actual meaning due to the large numerical uncertainty.
You do not currently have access to this content.