We perform molecular dynamics simulation on a tetrahedral network glassformer using a model for viscous SiO2 by Coslovich and Pastore [J. Phys.: Condens. Matter21, 285107 (2009)]. In this system, Si and O particles form a random network at low temperature T. We attach an ellipsoid to each particle to represent its time-averaged vibration tensor. We then examine the anisotropic vibrations of Si and O, where the ellipsoid orientations are correlated with the network. The ellipsoids exhibit marked vibrational heterogeneity. The configuration changes occur as breakage and reorganization of the network, where only one or two particles undergo large jumps at each rearrangement leading to diffusion. To the time-correlation functions, however, the particles surrounding these largely displaced ones yield significantly T-dependent contributions, resulting in a weak violation of the Stokes-Einstein relation. This crossover is mild in silica due to the small Si–O bond numbers per particle, while it is strong in fragile glassformers with large coordination numbers. On long timescales, jump events tend to occur in the same regions forming marked dynamic heterogeneity. We also calculate the diffusion constants and the viscosity. The diffusion obeys activation dynamics and may be studied by short-time analysis of irreversible jumps.

1.
C. A.
Angell
,
K. L.
Ngai
,
G. B.
McKenna
,
P. F.
McMillan
, and
S. W.
Martin
,
J. Appl. Phys.
88
,
3113
(
2000
).
2.
S.
Sastry
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
Nature (London)
393
,
554
(
1998
);
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature (London)
410
,
259
(
2001
).
3.
K.
Binder
and
W.
Kob
,
Glassy Materials and Disordered Solids
(
World Scientific
,
Singapore
,
2005
).
4.
K.
Binder
,
J.
Horbach
,
H.
Knoth
, and
P.
Pfleiderer
,
J. Phys.: Condens. Matter
19
,
205102
(
2007
);
J.
Horbach
,
J. Phys.: Condens. Matter
20
,
244118
(
2008
).
5.
B. W. H.
van Beest
,
G. J.
Kramer
, and
R. A.
van Santen
,
Phys. Rev. Lett.
64
,
1955
(
1990
).
6.
J.
Horbach
and
W.
Kob
,
Phys. Rev. B
60
,
3169
(
1999
).
7.
W.
Götze
and
L.
Sjögren
,
Rep. Prog. Phys.
55
,
241
(
1992
).
8.
H.
Sillescu
,
J. Non-Cryst. Solids
243
,
81
(
1999
).
9.
M. D.
Ediger
,
Annu. Rev. Phys. Chem.
51
,
99
(
2000
).
10.
R.
Yamamoto
and
A.
Onuki
,
Phys. Rev. Lett.
81
,
4915
(
1998
).
11.
C. D.
Michele
and
D.
Leporini
,
Phys. Rev. E
63
,
036701
(
2001
);
P.
Bordat
,
F.
Affouard
,
M.
Descamps
, and
F.
Müller-Plathe
,
J. Phys. Condens. Matter
15
,
5397
(
2003
).
12.
W.
Kob
,
C.
Donati
,
S. J.
Plimton
,
P. H.
Poole
, and
S. C.
Glotzer
,
Phys. Rev. Lett.
79
,
2827
(
1997
);
C.
Donati
,
S. C.
Glotzer
,
P. H.
Poole
,
W.
Kob
, and
S. J.
Plimpton
,
Phys. Rev. E
60
,
3107
(
1999
).
13.
S. C.
Glotzer
,
J. Non-Cryst. Solids
274
,
342
(
2000
).
14.
H. R.
Schober
,
C.
Oligschleger
, and
B. B.
Laird
,
J. Non-Cryst. Solids
156–158
,
965
(
1993
);
C.
Oligschleger
and
H. R.
Schober
,
Phys. Rev. B
59
,
811
(
1999
).
15.
R.
Yamamoto
and
A.
Onuki
,
J. Phys. Soc. Jpn.
66
,
2545
(
1997
);
R.
Yamamoto
and
A.
Onuki
,
Phys. Rev. E
58
,
3515
(
1998
);
R.
Yamamoto
and
A.
Onuki
,
J. Phys.: Condens. Matter
12
(
29
),
6323
(
2000
).
16.
T.
Kawasaki
and
A.
Onuki
,
Phys. Rev. E
87
,
012312
(
2013
).
17.
V.
Teboul
,
A.
Monteil
,
L. C.
Fai
,
A.
Kerrache
, and
S.
Maabou
,
Eur. Phys. J. B
40
,
49
(
2004
).
18.
M.
Vogel
and
S.
Glotzer
,
Phys. Rev. Lett.
92
,
255901
(
2004
);
[PubMed]
M.
Vogel
and
S.
Glotzer
,
Phys. Rev. E
70
,
061504
(
2004
).
19.
A.
Saksaengwijit
,
J.
Reinisch
, and
A.
Heuer
,
Phys. Rev. Lett.
93
,
235701
(
2004
);
[PubMed]
A.
Saksaengwijit
and
A.
Heuer
,
Phys. Rev. E
73
,
061503
(
2006
).
20.
K.
Vollmayr-Lee
and
A.
Zippelius
,
Phys. Rev. E
88
,
052145
(
2013
).
21.
K.
Vollmayr-Lee
,
J. A.
Roman
, and
J.
Horbach
,
Phys. Rev. E
81
,
061203
(
2010
);
K.
Vollmayr-Lee
,
R.
Bjorkquist
, and
L. M.
Chambers
,
Phys. Rev. Lett.
110
,
017801
(
2013
).
[PubMed]
22.
L.
Berthier
,
G.
Biroli
,
J.-P.
Bouchaud
,
W.
Kob
,
K.
Miyazaki
, and
D. R.
Reichman
,
J. Chem. Phys.
126
,
184504
(
2007
).
23.
L.
Berthier
,
Phys. Rev. E
76
,
011507
(
2007
).
24.
D.
Coslovich
and
G.
Pastore
,
J. Phys.: Condens. Matter
21
,
285107
(
2009
).
25.
L.
Berthier
,
G.
Biroli
,
D.
Coslovich
,
W.
Kob
, and
C.
Toninelli
,
Phys. Rev. E
86
,
031502
(
2012
);
K.
Kim
and
S.
Saito
,
J. Chem. Phys.
138
,
12A506
(
2013
).
[PubMed]
26.
H.
Shiba
,
T.
Kawasaki
, and
A.
Onuki
,
Phys. Rev. E
86
,
041504
(
2012
).
27.
R.
Biswas
,
A. M.
Bouchard
,
W. A.
Kamitakahara
,
G. S.
Grest
, and
C. M.
Soukoulis
,
Phys. Rev. Lett.
60
,
2280
(
1988
).
28.
S. N.
Taraskin
and
S. R.
Elliott
,
Phys. Rev. B
56
,
8605
(
1997
).
29.
J.
Horbach
,
W.
Kob
, and
K.
Binder
,
Eur. Phys. J. B
19
,
531
(
2001
).
30.
F.
Léonforte
,
R.
Boissiere
,
A.
Tanguy
,
J. P.
Wittmer
, and
J.-L.
Barrat
,
Phys. Rev. Lett.
97
,
055501
(
2006
).
31.
G.
Baldi
,
V. M.
Giordano
, and
G.
Monaco
,
Phys. Rev. B
83
,
174203
(
2011
).
32.
S. R.
Nagel
,
A.
Rahman
, and
G. S.
Grest
,
Phys. Rev. Lett.
53
,
368
(
1984
).
33.
F.
Léonforte
,
R.
Boissiere
,
A.
Tanguy
,
J. P.
Wittmer
, and
J.-L.
Barrat
,
Phys. Rev. B
72
,
224206
(
2005
).
34.
A.
Ghosh
,
V. K.
Chikkadi
,
P.
Schall
,
J.
Kurchan
, and
D.
Bonn
,
Phys. Rev. Lett.
104
,
248305
(
2010
).
35.
A.
Widmer-Cooper
,
H.
Perry
,
P.
Harrowell
, and
D. R.
Reichman
,
J. Chem. Phys.
131
,
194508
(
2009
).
36.
C.
Brito
and
M.
Wyart
,
J. Chem. Phys.
131
,
024504
(
2009
).
37.
T.
Kawasaki
and
A.
Onuki
,
J. Chem. Phys.
138
,
12A514
(
2013
).
38.
K.
Chen
,
M. L.
Manning
,
P. J.
Yunker
,
W. G.
Ellenbroek
,
Z.
Zhang
,
A. J.
Liu
, and
A. G.
Yodh
,
Phys. Rev. Lett.
107
,
108301
(
2011
).
39.
A.
Widmer-Cooper
and
P.
Harrowell
,
Phys. Rev. Lett.
96
,
185701
(
2006
).
40.
R.
Candelier
,
A.
Widmer-Cooper
,
J. K.
Kummerfeld
,
O.
Dauchot
,
G.
Biroli
,
P.
Harrowell
, and
D. R.
Reichman
,
Phys. Rev. Lett.
105
,
135702
(
2010
).
41.
In the CP and BKS models, different results are found in the populations of the coordination numbers at the end of Sec. III B and in Dα and η in Sec. V. To the Arrhenius forms (5.5) and (5.6), the BKS model6 gave
$T_{\rm Si}^A\break= 6\times 10^4$
T Si A=6×104
K,
$T_{\rm O}^A= 5.4\times 10^4$
TOA=5.4×104
K, and
$T_\eta \cong T_{\rm Si}^A$
TηT Si A
. These temperatures fairly agree with our normalized ones if they are multiplied by 9300 K (not 7000 K).
42.
K.
Vollmayr-Lee
,
W.
Kob
,
K.
Binder
, and
A.
Zippelius
,
J. Chem. Phys.
116
,
5158
(
2002
).
43.
J.
Horbach
and
W.
Kob
,
Phys. Rev. E
64
,
041503
(
2001
).
44.
M.
Hawlitzky
,
J.
Horbach
,
S.
Ispas
,
M.
Krack
, and
K.
Binder
,
J. Phys.: Condens. Matter
20
,
285106
(
2008
).
45.
The usual definition of τα is to set Fα(q, τα) = 1/e. In our case, we adopt Eq. (3.4), because the plateau value of FO(q, t) for O becomes smaller than 1/e for T > 0.4 at
$|{\bm q}|=8$
|q|=8
due to the large thermal motions of the O particles. See the sentences below Eq. (4.4).
46.
Vollmayr-Lee and Zippelius20 reported that if the time-averaged particle positions are used in gαβ(r), the numbers of the defect particles are decreased.
47.
C. A.
Angell
,
P. A.
Cheeseman
, and
S.
Tammadon
,
Science
218
,
885
(
1982
).
48.
J.-L.
Barrat
,
J.
Badro
, and
P.
Gillet
,
Mol. Simul.
20
,
17
(
1997
).
49.
A.
Onuki
,
Phase Transition Dynamics
(
Cambridge University Press
,
Cambridge
,
2002
).
50.
K.
Takae
and
A.
Onuki
,
Phys. Rev. E
88
,
042317
(
2013
).
51.
C. L.
Rountree
,
D.
Vandembroucq
,
M.
Talamali
,
E.
Bouchaud
, and
S.
Roux
,
Phys. Rev. Lett.
102
,
195501
(
2009
).
You do not currently have access to this content.