Hydrogen sulfide (H2S) is a prototype molecular system and a sister molecule of water (H2O). The phase diagram of solid H2S at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S–H bond and larger atomic core difference between H and S. Metallization is yet achieved for H2O, but it was observed for H2S above 96 GPa. However, the metallic structure of H2S remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid H2S at pressure ranges of 10–200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)]. Our study unravels a superconductive potential of metallic H2S with an estimated maximal transition temperature of ∼80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH4, GeH4, etc.).

1.
A. F.
Goncharov
and
R. J.
Hemley
,
Chem. Soc. Rev.
35
,
899
(
2006
).
2.
M. I.
Eremets
,
I. A.
Trojan
,
S. A.
Medvedev
,
J. S.
Tse
, and
Y.
Yao
,
Science
319
,
1506
(
2008
).
3.
X.-J.
Chen
,
J.-L.
Wang
,
V. V.
Struzhkin
,
H.-k.
Mao
,
R. J.
Hemley
, and
H.-Q.
Lin
,
Phys. Rev. Lett.
101
,
077002
(
2008
).
4.
M.
Martinez-Canales
,
A. R.
Oganov
,
Y.
Ma
,
Y.
Yan
,
A. O.
Lyakhov
, and
A.
Bergara
,
Phys. Rev. Lett.
102
,
087005
(
2009
).
5.
J. S.
Tse
,
Y.
Yao
, and
K.
Tanaka
,
Phys. Rev. Lett.
98
,
117004
(
2007
).
6.
G.
Gao
 et al,
Proc. Natl. Acad. Sci. U.S.A.
107
,
1317
(
2010
).
7.
G.
Gao
,
A. R.
Oganov
,
A.
Bergara
,
M.
Martinez-Canales
,
T.
Cui
,
T.
Iitaka
,
Y.
Ma
, and
G.
Zou
,
Phys. Rev. Lett.
101
,
107002
(
2008
).
8.
Y.
Li
,
G.
Gao
,
Y.
Xie
,
Y.
Ma
,
T.
Cui
, and
G.
Zou
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
15708
(
2010
).
9.
H.
Shimizu
,
Y.
Nakamichi
, and
S.
Sasaki
,
J. Chem. Phys.
95
,
2036
(
1991
).
10.
S.
Endo
,
N.
Ichimiya
,
K.
Koto
,
S.
Sasaki
, and
H.
Shimizu
,
Phys. Rev. B
50
,
5865
(
1994
).
11.
S.
Endo
,
A.
Honda
,
S.
Sasaki
,
H.
Shimizu
,
O.
Shimomura
, and
T.
Kikegawa
,
Phys. Rev. B
54
,
R717
(
1996
).
12.
M.
Sakashita
,
H.
Yamawaki
,
H.
Fujihisa
,
K.
Aoki
,
S.
Sasaki
, and
H.
Shimizu
,
Phys. Rev. Lett.
79
,
1082
(
1997
).
13.
M.
Collins
,
C.
Ratcliffe
, and
J.
Ripmeester
,
J. Phys. Chem.
93
,
7495
(
1989
).
14.
J. K.
Cockcroft
and
A. N.
Fitch
,
Z. Kristallogr.
193
,
1
(
1990
).
15.
H.
Fujihisa
,
H.
Yamawaki
,
M.
Sakashita
,
K.
Aoki
,
S.
Sasaki
, and
H.
Shimizu
,
Phys. Rev. B
57
,
2651
(
1998
).
16.
S.
Endo
,
A.
Honda
,
K.
Koto
,
O.
Shimomura
,
T.
Kikegawa
, and
N.
Hamaya
,
Phys. Rev. B
57
,
5699
(
1998
).
17.
R.
Rousseau
,
M.
Boero
,
M.
Bernasconi
,
M.
Parrinello
, and
K.
Terakura
,
Phys. Rev. Lett.
83
,
2218
(
1999
).
18.
T.
Ikeda
,
Phys. Rev. B
64
,
104103
(
2001
).
19.
L.
Wang
,
F.
Tian
,
W.
Feng
,
C.
Chen
,
Z.
He
,
Y.
Ma
,
T.
Cui
,
B.
Liu
, and
G.
Zou
,
J. Chem. Phys.
132
,
164506
(
2010
).
20.
R.
Rousseau
,
M.
Boero
,
M.
Bernasconi
,
M.
Parrinello
, and
K.
Terakura
,
Phys. Rev. Lett.
85
,
1254
(
2000
).
21.
C. J.
Pickard
,
M.
Martinez-Canales
, and
R. J.
Needs
,
Phys. Rev. Lett.
110
,
245701
(
2013
).
22.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Comput. Phys. Commun.
183
,
2063
(
2012
).
23.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. B
82
,
094116
(
2010
).
24.
J.
Lv
,
Y.
Wang
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. Lett.
106
,
015503
(
2011
).
25.
L.
Zhu
,
H.
Wang
,
Y.
Wang
,
J.
Lv
,
Y.
Ma
,
Q.
Cui
,
Y.
Ma
, and
G.
Zou
,
Phys. Rev. Lett.
106
,
145501
(
2011
).
26.
Q.
Li
,
D.
Zhou
,
W.
Zheng
,
Y.
Ma
, and
C.
Chen
,
Phys. Rev. Lett.
110
,
136403
(
2013
).
27.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
28.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
29.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
30.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
31.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
, and
R. L.
Martin
,
J. Chem. Phys.
123
,
174101
(
2005
).
32.
S.
Scandolo
,
P.
Giannozzi
,
C.
Cavazzoni
,
S.
de Gironcoli
,
A.
Pasquarello
, and
S.
Baroni
,
Z. Kristallogr.
220
,
574
(
2005
).
33.
See supplementary material at http://dx.doi.org/10.1063/1.4874158 for the calculated structure parameters, electron localization functions, phonon dispersion curves, and electronic band structures.
34.
T.
Kume
,
Y.
Fukaya
,
S.
Sasaki
, and
H.
Shimizu
,
Rev. Sci. Instrum.
73
,
2355
(
2002
).
35.
A.
Simon
,
Angew. Chem., Int. Ed.
36
,
1788
(
1997
).
36.
P. B.
Allen
,
Phys. Rev. B
6
,
2577
(
1972
).
37.
P. B.
Allen
and
R. C.
Dynes
,
Phys. Rev. B
12
,
905
(
1975
).
38.
N. W.
Ashcroft
,
Phys. Rev. Lett.
92
,
187002
(
2004
).
39.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
40.
S.
Rettig
and
J.
Trotter
,
Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
43
,
2260
(
1987
).
41.
H.
Fujihisa
,
Y.
Akahama
,
H.
Kawamura
,
H.
Yamawaki
,
M.
Sakashita
,
T.
Yamada
,
K.
Honda
, and
T.
Le Bihan
,
Phys. Rev. B
70
,
134106
(
2004
).
42.
O.
Degtyareva
,
E.
Gregoryanz
,
M.
Somayazulu
,
H.-k.
Mao
, and
R. J.
Hemley
,
Phys. Rev. B
71
,
214104
(
2005
).
43.
C. J.
Pickard
and
R. J.
Needs
,
Nat. Phys.
3
,
473
(
2007
).

Supplementary Material

You do not currently have access to this content.